SELF ASSESSMENT MODAL PAPER-3(2024-25)

X CLASS-MATHEMATICS-SOLUTIONS

I. Choose the correct answer. $7 \times 1 = 7$

1. If P(E) = 0.09, then find P(Not E) =

Sol. P(not E) = 1 - P(E) = 1 - 0.09 = 0.91

2. If $\sin \theta = \cos \theta$ then, $\theta = \dots$

[C]

A) 0^{0}

B) 35°

B) 45°

B) 60°

3. In the formula, Mean $(\bar{x}) = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$, the value of $u_i =$

[D]

A) $\frac{x_i + a}{h}$ B) $(x_i - a)h$ B) $\frac{a - x_i}{h}$ B) $\frac{x_i - a}{h}$

4. A single letter is selected at random from the word "MATHEMATICS",

the probability that it is a vowel is.....

Sol. $\frac{4}{11}$

5. Assertation (A): Mode of $\sin 0^{\circ}$, $\tan 45^{\circ}$, $\cos 0^{\circ}$, $\sin 90^{\circ}$, and $\cos 90^{\circ}$ is 1.

Reason (R): Mode is the most frequently occurred observation in the given data.

A) Both A and R are true and R is the correct explanation of A

B) Both A and R are true but R is the not correct explanation of A

C) A is true but R is false

D) A is false but R is true.

6. Match the following

[B]

Sin θ i)

a) $\frac{1}{\cos\theta}$

ii) Tan θ b) $\sqrt{1-\cos^2\theta}$

iii) $Sec \theta$ c) $\frac{\sin\theta}{\cos\theta}$

Choose the correct answer:

A) i - c, ii - b, iii - a

B) i - b, ii - c, iii - a

C) i - b, ii - a, iii - c

D) i - c, ii - a, iii - b

7. Find the value of $sin^2\theta + cos^2\theta =$

Sol.
$$sin^2\theta + cos^2\theta = 1$$

II. Solve the following problems.

$$6 \times 2 = 12$$

8. A dice is thrown once, find the Probability of getting

i) an even number ii) a number lying between 2 and 6

Sol. Probability of an event
$$E = P(E) = \frac{\text{Number of outcomes favourable to E}}{\text{Number of all possible outcomes}} = \frac{n(E)}{n(S)}$$

A dice is thrown once then $S = \{1, 2, 3, 4, 5, 6\}$ n(S) = 6

- i) A= The event "getting Even numbers" = $\{2, 4, 6\}$ n(A) 3 P(An even number) = $\frac{n(A)}{n(S)} = \frac{3}{6} = \frac{1}{2}$
- ii) B = The event "getting A number lying between 2 and 6" = { 3, 4, 5} n(B) = 3P(A number lying between 2 and 6) = $\frac{n(B)}{n(S)} = \frac{3}{6} = \frac{1}{2}$

9. Write the formula to find mode of grouped data and explain each term in it.

Sol. Mode for Grouped data:

Mode =
$$l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

where l = lower boundary of the modal class

 f_1 = frequency of the modal class

 $f_0 =$ frequency of the class preceding the modal class

 f_2 = frequency of the class succeeding the modal class

h =size of the modal class

10. Prove that
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

Sol.
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}$$
$$= \sqrt{\frac{(1+\sin A)^2}{1-\sin^2 A}}$$
$$= \frac{\sqrt{(1+\sin A)^2}}{\sqrt{\cos^2 A}} = \frac{1+\sin A}{\cos A}$$
$$= \frac{1}{\cos A} + \frac{\sin A}{\cos A}$$
$$= \sec A + \tan A$$

11. If $Sin(A - B) = \frac{1}{2}$, $Cos(A + B) = \frac{1}{2}$, $O^0 < A + B \le 90^0$, A > B, Find A and B

Sol.
$$Sin(A-B) = \frac{1}{2}$$

$$Cos(A+B) = \frac{1}{2}$$

$$\Rightarrow$$
 Sin $(A - B) = \sin 30^{\circ}$

$$\Rightarrow Cos(A + B) = Cos 60^{\circ}$$

$$\Rightarrow A - B = 30^{\circ}$$
 (1)

$$\Rightarrow A + B = 60^{\circ}$$
 (2)

$$(1)+(2) \Rightarrow A - B + A + B = 30^{0} + 60^{0}$$

$$\Rightarrow 2A = 90^{0}$$

$$\Rightarrow A = \frac{90^{0}}{2}$$

$$\Rightarrow A = 45^{0}$$

$$From (2), 45^0 + B = 60^0$$

$$\Rightarrow B = 60^{0} - 45^{0} = 15^{0}$$

12. A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is not red.

$$n(S) = 3 + 5 = 8$$

E = The event "Not getting a red ball"

$$n(E) = 5$$

P(Not getting red ball) =
$$\frac{n(E)}{n(S)} = \frac{5}{8}$$

13. State whether sin(A + B) = sinA + sinB is true or false. Justify your answer.

Sol.
$$sin(A + B) = sinA + sinB$$
 is false

Let us take
$$A = 30^{\circ}$$
 and $B = 60^{\circ}$

L.H.S.
$$= sin(A + B) = sin(30^{0} + 60^{0}) = sin90^{0} = 1$$

R.H.S.
$$= sinA + sinB = sin30^{\circ} + sin60^{\circ} = \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2}$$

L.H.S.
$$\neq$$
 R.H.S. \Rightarrow $sin(A + B) = sinA + sinB$ is False

III. Solve the following problems.

$$6 \times 2 = 12$$

14. Prove that $(sinA + cosecA)^2 + (cosA + secA)^2 = 7 + tan^2A + cot^2A$

Sol.
$$L.H.S = (sinA + cosecA)^2 + (cosA + secA)^2$$

 $= sin^2A + cosec^2A + 2.sinA.cosecA + cos^2A + sec^2A + 2.cosA.secA$
 $= sin^2A + cos^2A + cosec^2A + sec^2A + 2sinA \times \frac{1}{sinA} \times 2cosA \times \frac{1}{cosA}$
 $= 1 + cosec^2A + sec^2A + 2 + 2$
 $= 1 + (1 + cot^2A) + (1 + tan^2A) + 4 = 7 + tan^2A + cot^2A = R.H.S$

15. A box contains 100 discs which are numbered from 1 to 100. If one disc is drawn at random from the box. Find the probability that it bears i) a two digit number ii) a perfect square

Sol. Probability of an event
$$E = P(E) = \frac{\text{Number of outcomes favourable to E}}{\text{Number of all possible outcomes}} = \frac{n(E)}{n(S)}$$

i) A = The event "getting a two digit number"

Favourable out comes = {10, 11, 12,99}

$$n(A) = 90$$

P(getting a two digit number) =
$$\frac{n(A)}{n(S)} = \frac{90}{100} = \frac{9}{10}$$

ii) B = The event "getting a perfect square"

Favourable out comes = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

$$n(B) = 10$$

P(getting a perfect square) =
$$\frac{n(B)}{n(S)} = \frac{10}{100} = \frac{1}{10}$$

IV. Solve the following problems.

 $1 \times 8 = 8$

16. a) Determain the median of the following frequency distribution.

Class intervals	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	8	15	20	12	9	6

Sol:

Class interval	frequency	Cumulative frequency			
15-20	8	8			
20-25	15	23→ cf			
l←25-30	20→f	43			
30-35	12	55			
35-40	9	64			
40-45	6	70			
m 70					

→ Median class

$$n = 70, \quad \frac{n}{2} = \frac{70}{2} = 35$$

So, Median class is 25 - 30

$$l = 25$$
, $cf = 23$, $f = 20$, $h = 5$

$$Median = l + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$$

$$= 25 + \left(\frac{35 - 23}{20}\right) \times 5$$
$$= 25 + 3 = 28$$

- 16. b) One card is drawn from a well shuffled deck of 52 cards. Find the Probability of getting.
 - i) a face card
- ii) a spade
- iii) the queen of heart
- iv) a king

Sol. Probability of an event
$$E = P(E) = \frac{\text{Number of outcomes favourable to E}}{\text{Number of all possible outcomes}} = \frac{n(E)}{n(S)}$$

i) A = The event "getting a face card"

$$n(A) = 3+3+3+3 = 12$$

P(getting a face card) =
$$\frac{n(A)}{n(S)} = \frac{12}{52} = \frac{3}{13}$$

ii) B = The event "getting a spade"

$$n(B) = 13$$

P(getting a spade) =
$$\frac{n(B)}{n(S)} = \frac{13}{52} = \frac{1}{4}$$

iv) C = The event "getting the queen of heart"

$$n(C) = 1$$

P(getting the queen of heart) =
$$\frac{n(C)}{n(S)} = \frac{1}{52}$$

v) D = The event "getting a king"

$$n(D) = 4$$

P(getting a king) =
$$\frac{n(D)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$

https://sureshmathsmaterial.com/