Self Assessment Model Paper - 3 (2024-25)

IX MATHEMATICS SOLUTIONS

Prepared By:BALABHADRA SURESH

I. Answer all the questions in one word or one phrase.

1. If in \triangle ABC and \triangle PQR, AB = PQ, BC = QR and CA = RP then write the pair of congruent triangles in symbolic form

Sol: $\triangle ABC$ \cong $\triangle PQR$

2. If $\triangle PQR \cong \triangle EFD$; then $\angle E =$

[A]

- A) ∠P
- B) ∠Q
- C) $\angle R$
- D) None of these
- 3. Given which of the following is false
 - A) The sides opposite to equal angles of a triangle are equal.

[C]

- B) Two squares of the same sides are congruent
- C) Each angle of an isosceles triangle is 60smgse
- **D)** Angles opposite to equal sides of a triangle are equal.
- 4. Each angle of a square is _____

Sol: 90°

5. Statement - I: The diagonals of parallelogram bisect each other.

[A]

Statement - II: Two figures are congruent if they are of the same shape and of the same size

Now choose the correct option.

- A) Both statements are true
- B) Statement I is true and statement II is false
- C) Statement I is False and statement II is true
- D) Both statements are false
- 6. In a Parallelogram ABCD, If $\angle A = 75^{\circ}$ then $\angle C =$
- Sol: $\angle C = \angle A(In \ a \ parallelogram \ opposite \ angles \ are \ equal)$

$$\angle C = 75^{\circ}$$

7. In the adjacent figure, D and E are the mid points of the sides AB and AC of \triangle ABC and BC = 10 cm, then find DE...

Sol: From mid point theorem.

$$DE = \frac{1}{2}BC = \frac{1}{2} \times 10 \ cm = 5 \ cm.$$

II. Solve the following problems.

 $6 \times 2 = 12$

- 8. AB is a line segment and line "l" is its perpendicular bisector. If a point P lies on line "l", show that P is equidistant from A and B.
- Sol: *l* is perpendicular bisector of AB

 Δ PCA and Δ PCB.

$$AC = BC (C is midpoint of AB)$$

$$\angle PCA = \angle PCB = 90^{\circ} (l \perp AB)$$

$$PC = PC (Common)$$

$$So, \Delta PCA \cong \Delta PCB$$
 (SAS congruence rule)

$$PA = PB (CPCT)$$

9. Show that the diagonals of a rhombus are perpendicular to each other.

Sol: Let ABCD is a rhombus.

$$AB = BC = CD = DA$$
 (All sides are equal in rhombus)

In
$$\triangle$$
 AOD and \triangle COD

$$OD = OD (Common)$$

$$AD = CD$$
 (given)

$$\triangle$$
 AOD \cong \triangle COD (SSS congruence rule)

$$\angle AOD = \angle COD (CPCT)$$

But,
$$\angle AOD + \angle COD = 180^{\circ}$$
 (Linear pair)

$$2\angle AOD = 180^{\circ}$$

$$\angle AOD = 90^{\circ}$$

So, the diagonals of a rhombus are perpendicular to each other.

10. ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC, Find $\angle B$ and $\angle C$.

Sol: In
$$\triangle ABC$$
, $AB = AC$

$$\Rightarrow \angle C = \angle B = x$$
 (Equal sides opposite angles are equal)

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Angle sum property of a triangle)

$$90^0 + x + x = 180^0$$

$$2x = 90^{\circ}$$

$$x = \frac{90^{\circ}}{2} = 45^{\circ}$$

$$\angle B = \angle C = 45^{\circ}$$

11. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that AD bisects BC.

Sol: In \triangle ADB and \triangle ADC

$$AB = AC(Given)$$

$$\angle ADB = \angle ADC = 90^{\circ} (AD \perp BC)$$

$$AD = AD(Common)$$

$$\triangle$$
ADB \cong \triangle ADC (RHS Congruence rule)

Hence, AD bisects BC

12. Show that each angle of a rectangle is a right angle.

Sol: Rectangle is a parallelogram in which one angle is a right angle.

ABCD is a rectangle. Let one angle is
$$\angle A = 90^{\circ}$$

We have, AD || BC and AB is a transversal.

$$\angle A + \angle B = 180^{\circ}$$
 (Interior angles on the same side of the transversal)

$$90^{0} + \angle B = 180^{\circ}$$

$$\angle B = 180^{\circ} - 90^{0} = 90^{0}$$

$$\angle$$
 C = \angle A and \angle D = \angle B(Opposite angles of the parallelogram)

$$\angle C = 90^{\circ} \text{ and } \angle D = 90^{\circ}$$

Therefore, each of the angles of a rectangle is a right angle

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

- **Sol:** We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.
 - (i) In \triangle ADC , S and R are midpoints of DA and DC.

SR || AC and SR =
$$\frac{1}{2}$$
 AC

III. Solve the following problems.

.2x4=8

- 14. In the given figure, ABC is a triangle in BC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that
- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC
- **Sol:** In \triangle ABE and \triangle ACF

$$\angle A = \angle A$$
 (Common angle)

$$\angle AEB = \angle AFC = 90^{\circ} (BE \perp AC \text{ and } CF \perp AB)$$

$$BE = CF(Given)$$

 \triangle ABE \cong \triangle ACF (AAS Congruence rule)

(ii)
$$\triangle$$
 ABE \cong \triangle ACF

$$\Rightarrow$$
 AB = AC (CPCT)

 ΔABC is an isosceles triangle.

- 15. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- **Sol:** We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In $\triangle ABC$, P and Q are midpoints of AB and BC.

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \rightarrow (1)$$

In $\triangle ADC$, S and R are midpoints of AD and DC.

$$SR \parallel AC \ and \ SR = \frac{1}{2} \ AC \rightarrow (2)$$

From (1) and (2):
$$PQ \parallel SR$$
 and $PQ = SR = \frac{1}{2}AC$

Similarly: PS || QR and PS = QR =
$$\frac{1}{2}$$
 BD

Also, AC = BD (Diagonals of a rectangle AC, BD are equal)

$$\therefore$$
 PQ=QR=RS=SP

So, PQRS is a rhombus.

IV. Solve the following problem.

$$1 x8 = 8$$

- 16. a) In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that: (i) \triangle AMC \cong \triangle BMD (ii) \angle DBC is a right angle. (iii) \triangle DBC \cong \triangle ACB (iv) CM = $\frac{1}{2}$ AB
- **Sol:** (i) In \triangle AMC and \triangle BMD

AM=BM (M is midpoint of AB)

∠ AMC=∠ BMD (Vertically opposite angles)

DM = CM (Given)

∴ \triangle AMC \cong \triangle BMD (By SAS congruence rule)

(ii) \triangle AMC \cong \triangle BMD

$$\angle ACM = \angle BDM$$
 (By CPCT)

Alternate interior angles are equal

$$\angle$$
DBC + \angle ACB=180 $^{\circ}$ (co-interior angles are supplementary)

$$\angle DBC + 90^{\circ} = 180^{\circ} (Given \angle ACB = 90^{\circ})$$

(iii)
$$In \triangle DBC$$
 and $\triangle ACB$

$$DB=AC (\Delta AMC \cong \Delta BMD)$$

$$\angle DBC = \angle ACB = 90^{\circ}$$

$$\Delta$$
 DBC \cong Δ ACB (By SAS congruence rule)

(iv)
$$\triangle$$
 DBC \cong \triangle *ACB*

$$AB=2 CM (CM=DM)$$

$$CM = \frac{1}{2}AB$$

b) In \triangle ABC, D, E and F are respectively the mid-points of sides AB, BC and CA (see Fig. 8.18). Show that \triangle ABC is divided into four congruent triangles by joining D, E and F.

Solution: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side.

Therefore ADEF, BDFE and DFCE are all parallelograms.

Now DE is a diagonal of the parallelogram BDFE,

We know that diagonal of a parallelogram divides it into two congruent triangles.

Therefore, $\triangle BDE \cong \triangle FED$

Similarly $\Delta DAF \cong \Delta FED$ and $\Delta EFC \cong \Delta FED$

$$\therefore \Delta BDE \cong \Delta \ FED \cong \Delta DAF \cong \Delta EFC$$

So, all the four triangles are congruent

