CHAPTER

10

VI-MATHEMATICS-NCERT (2024-25)

10 .MENSURATION (notes)

REPARED BY: BALABHADRA SURESH https://sureshmathsmaterial.com/

Perimeter: Perimeter is the distance covered along the boundary forming a closed figure. When you go round the figure once.

- Meera went to a park 150 m long and 80 m wide. She took one complete round on its boundary.
 What is the distance covered by her?
- Sol: The distance covered by Meera=150 m+80 m+150 m+80 m=460 m
- 2. Find the perimeter of the following figures:
- (a) Perimeter = AB + BC + CD + DA= 40 cm + 10 cm + 40 cm + 10 cm = 100 cm

- (b) Perimeter = AB + BC + CD + DA=5 cm+5 cm+5 cm+5 cm= 20 cm
- (C) Perimeter = AB + BC + CD + DE + EF + FG + GH + HI + IJ + JK + KL + LA=1 cm+ 3 cm+ 3 cm+ 1 cm+3 cm+ 3 cm+1 cm+3 cm+ 3 cm +1 cm+ 3 cm+ 3 cm

=28 cm

(d) Perimeter = AB + BC + CD + DE + EF + FA

=495 cm

Perimeter of a rectangle:

Perimeter of a rectangle = $2 \times (length + breadth) = 2(l + b)$

Find the perimeter of the following rectangles:

(i) Length=25 cm, Breadth= 12 cm

Perimeter by adding all the sides=25 cm+12 cm+25 cm+12 cm=74 cm

Perimeter =
$$2 \times (\text{Length + Breadth}) = 2 \times (25 \text{ cm} + 12 \text{ cm}) = 2 \times (37 \text{ cm}) = 74 \text{ cm}$$

(ii) Length=0.5 cm, Breadth= 0.25 cm

Perimeter by adding all the sides=0.5 cm + 0.25 cm + 0.25 cm + 0.25 cm = 1.5 cm

Perimeter =
$$2 \times (\text{Length} + \text{Breadth}) = 2 \times (0.5 \text{ cm} + 0.25 \text{ cm}) = 2 \times (0.75 \text{ cm}) = 1.5 \text{ cm}$$

(iii) Length=18 cm, Breadth= 15 cm

Perimeter by adding all the sides=18 cm+15 cm+18 cm+15 cm=66 cm

Perimeter =
$$2 \times (\text{Length} + \text{Breadth}) = 2 \times (18 \text{ cm} + 15 \text{ cm}) = 2 \times (33 \text{ cm}) = 66 \text{ cm}$$

(iv) Length=10.5 cm, Breadth= 8.5 cm

Perimeter by adding all the sides=10.5 cm+8.5 cm+10.5 cm+8.5 cm=38 cm

Perimeter =
$$2 \times (\text{Length + Breadth}) = 2 \times (10.5 \text{ cm} + 8.5 \text{ cm}) = 2 \times (19 \text{ cm}) = 38 \text{ cm}$$

Example 1 : Shabana wants to put a lace border all around a rectangular table cover 3 m long and 2 m wide. Find the length of the lace required by Shabana.

Sol: Length = 3 m, Breadth = 2 m

Perimeter $=2 \times (length + breadth)$

$$= 2 \times (3 \text{ m} + 2 \text{ m}) = 2 \times 5 \text{ m} = 10 \text{ m}$$

So, required length of the lace is 10 m.

Example 2: An athlete takes 10 rounds of a rectangular park, 50 m long and 25 m wide. Find the total distance covered by him.

Sol: Length of the rectangular park = 50 m

Breadth of the rectangular park = 25 m

Perimeter of the rectangular park= $= 2 \times (length + breadth)$

$$= 2 \times (50 \text{ m} + 25 \text{ m})$$

$$= 2 \times 75 \text{ m} = 150 \text{ m}$$

The distance covered by the athlete in one round=150 m.

Distance covered in 10 rounds = 10×150 m = 1500 m.

The total distance covered by the athlete is 1500 m.

Example 3: Find the perimeter of a rectangle whose length and breadth are 150 cm and 1 m respectively.

Sol: Length = 150 cm, Breadth = 1m = 100 cm.

Perimeter of the rectangle $= 2 \times (length + breadth)$

$$= 2 \times (150 \text{ cm} + 100 \text{ cm})$$

$$= 2 \times (250 \text{ cm}) = 500 \text{ cm} = 5 \text{ m}.$$

Example 4: A farmer has a rectangular field of length and breadth 240 m and 180 m respectively. He wants to fence it with 3 rounds of rope as shown in figure 10.4.

is the total length of rope he must use?

Sol: Length=240 m, Breadth=180 m.

Perimeter of the field = $2 \times (length + breadth)$

$$= 2 \times (240 \text{ m} + 180 \text{ m})$$

$$= 2 \times 420 \text{ m} = 840 \text{ m}$$

Total length of rope required = $3 \times 840 \text{ m} = 2520 \text{ m}$.

Example 5: Find the cost of fencing a rectangular park of length 250 m and breadth 175 m at the rate of ₹ 12 per metre.

Sol: Length of the rectangular park = 250 m

Breadth of the rectangular park = 175 m

Perimeter of the rectangle = $2 \times (length + breadth)$

$$= 2 \times (250 \text{ m} + 175 \text{ m}) = 2 \times (425 \text{ m}) = 850 \text{ m}$$

Cost of fencing 1m of park = ₹ 12

The total cost of fencing the park = ₹ $12 \times 850 = ₹ 10200$

Perimeter of a square:

Perimeter of a square = $4 \times \text{side}$

Perimeter of an equilateral triangle:

Perimeter of an equilateral triangle = $3 \times \text{side}$

Example 6: Find the distance travelled by Shaina if she takes three rounds of a square park of side 70 m.

Sol: Length of side=70 m

Perimeter of the square park = $4 \times \text{length of a side} = 4 \times 70 \text{ m} = 280 \text{ m}$

Distance covered in one round = 280 m.

Distance travelled in three rounds= 3×280 m = 840m.

Example 7: Pinky runs around a square field of side 75 m, Bob runs around a rectangular field with length 160 m and breadth 105 m. Who covers more distance and by how much?

Sol: Perimeter of the square = $4 \times \text{length of a side} = 4 \times 75 \text{ m} = 300 \text{ m}$

Distance covered by Pinky in one round=300 m.

Perimeter of the rectangle $= 2 \times (length + breadth)$

$$= 2 \times (160 \text{ m} + 105 \text{ m})$$

$$= 2 \times 265 \text{ m} = 530 \text{ m}.$$

Distance covered by Bob in one round=530 m

Difference in the distance covered = 530 m - 300 m = 230 m.

Therefore, Bob covers more distance by 230 m.

Example 8: Find the perimeter of a regular pentagon with each side measuring 3 cm.

Sol: Side=3 cm,

Perimeter of the regular pentagon= $5 \times$ side= 5×3 cm=15 cm.

Example 9: The perimeter of a regular hexagon is 18 cm. How long is its one side?

Sol: perimeter of a regular hexagon = 18 cm

6×Side=18 cm

Side =
$$\frac{18}{6}$$
 = 3 cm

EXERCISE 10.2

1. Find the perimeter of each of the following figures:

- (a) Perimeter=2+1+5+4=12cm
- (b) Perimeter=23+35+40+35=133 cm
- (c) Perimeter=15+15+15+15=60 cm
- (d) Perimeter=4+4+4+4=20 cm
- (e) Perimeter=2.5+2.5+0.5+4+1+4+0.5=15 cm

- 2. The lid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape. What is the length of the tape required?
- Sol: Length of lid=40 cm, Breadth of lid=10 cm

Perimeter= $2 \times (length + breadth)$

$$= 2 \times (40 + 10) = 2 \times 50 = 100 \text{ cm}$$

The length of the tape required=100 cm. =1 m.

- 3. A table-top measures 2 m 25 cm by 1 m 50 cm. What is the perimeter of the table-top?
- Sol: Length = 2 m 25 cm = 2.25 m, Breadth = 1 m 50 cm = 1.50 m

Perimeter= $2 \times (length + breadth)$

$$=2\times(2.25+1.50)$$

$$=2\times3.75=7.50 \text{ m}=7 \text{ m} 50 \text{ cm}$$

- 4. What is the length of the wooden strip required to frame a photograph of length and breadth 32 cm and 21 cm respectively?
- Sol: Length of frame=32 cm

Breadth of frame=21 cm

Perimeter of the frame= $2 \times$ (length + breadth)

$$=2\times(32+21)=2\times53=106$$
 cm

∴ The length of the wooden strip required=106 cm.

- 5. A rectangular piece of land measures 0.7 km by 0.5 km. Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?
- Sol: Length of land=0.7 km

Breadth of land=0.5 km

Perimeter of the land= $2 \times$ (length + breadth)

$$=2\times(0.7+0.5)=2\times1.2=2.4$$
 km

The length of the wire needed to fence= 4×2.4 km=9.6 km.

- 6. Find the perimeter of each of the following shapes:
- (a) A triangle of sides 3 cm, 4 cm and 5 cm.
- Sol: Perimeter of triangle= 3 cm+4 cm+5 cm=12 cm.
- (b) An equilateral triangle of side 9 cm.
- **Sol:** Perimeter of An equilateral triangle=3×side=3×9 cm=27 cm.
- (c) An isosceles triangle with equal sides 8 cm each and third side 6 cm
- Sol: Perimeter of An isosceles triangle=8 cm+8 cm+6 cm=22 cm
- 7. Find the perimeter of a triangle with sides measuring 10 cm, 14 cm and 15 cm.
- Sol: The perimeter of triangle=10+14+15=39 cm.
- 8. Find the perimeter of a regular hexagon with each side measuring 8 m.
- Sol: The perimeter of regular hexagon= $6 \times \text{side} = 6 \times 8 \text{ m} = 48 \text{ m}$.
- 9. Find the side of the square whose perimeter is $20\ m.$
- Sol: Perimeter of square= 20 m

$$4 \times \text{side} = 20 \text{ m}$$

Side of the square $=\frac{20 m}{4} = 5 m$

10. The perimeter of a regular pentagon is 100 cm. How long is its each side?

Sol: The perimeter of a regular pentagon = 100 cm

5× side of pentagon=100 cm

Side of pentagon =
$$\frac{100 \text{ cm}}{5}$$
 = 20 cm

11. A piece of string is 30 cm long. What will be the length of each side if the string is used to form :

(a) a square?

Sol: Perimeter of square=30 cm

4× side of square=30 cm

Side of square
$$=\frac{30 cm}{4} = 7.5 cm$$

(b) an equilateral triangle?

Sol: Perimeter of an equilateral triangle =30 cm

 $3 \times$ side of an equilateral triangle = 30 cm

Side of an equilateral triangle =
$$\frac{30 \text{ cm}}{3}$$
 = 10 cm

(c) a regular hexagon?

Sol: Perimeter of a regular hexagon =30 cm

 $6 \times$ side of a regular hexagon = 30 cm

Side of a regular hexagon
$$=$$
 $\frac{30 cm}{6} = 5 cm$

12. Two sides of a triangle are 12 cm and 14 cm. The perimeter of the triangle is 36 cm. What is its third side?

$$12 \text{ cm} + 14 \text{ cm} + \text{CA} = 36 \text{ cm}$$

$$26 \text{ cm} + \text{CA} = 36 \text{ cm}$$

$$CA = 36 \text{ cm} - 26 \text{cm} = 10 \text{ cm}$$

The third side=10 cm.

13. Find the cost of fencing a square park of side 250 m at the rate of ₹ 20 per metre.

Sol: side of the square park=250 m

Perimeter of the square park= $4 \times \text{side} = 4 \times 250 \text{ m} = 1000 \text{ m}$.

Cost of fencing per 1 m=₹ 20

Total cost of fencing =₹20×1000=₹20,000

14. Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the rate of ₹ 12 per metre.

Sol: length =175 m and breadth =125 m

Perimeter of rectangular park= $2\times$ (Length + Breadth)= $2\times$ (175+125)= $2\times$ 300=600 m

The cost of fencing per 1 m=₹ 12

Total cost of fencing= ₹ 12×600=₹ 7200

15. Sweety runs around a square park of side 75 m. Bulbul runs around a rectangular park with length 60 m and breadth 45 m. Who covers less distance?

Sol: Side of square park=75 m.

Perimeter of the square park= $4 \times \text{side} = 4 \times 75 \text{ m} = 300 \text{ m}$.

Rectangular park: Length=60m, Breadth=45 m

Perimeter of rectangular park= $2 \times (\text{Length+Breadth}) = 2 \times (60 \text{ m} + 45 \text{ m}) = 2 \times 105 \text{m} = 210 \text{ m}$.

Sweety covers 300 m and Bulbul covers 210 m.

... Bulbul covers less distance.

16. What is the perimeter of each of the following figures? What do you infer from the answers?

(a) Side of the square=25 cm.

Perimeter of the square= $4 \times \text{side} = 4 \times 25 \text{ cm} = 100 \text{ cm}$.

(b) Length=40 cm, Breadth=10 cm.

Perimeter of rectangular = $2 \times (\text{Length} + \text{Breadth}) = 2 \times (40 \text{cm} + 10 \text{cm}) = 2 \times 50 \text{ cm} = 100 \text{ cm}$

(c) Length=30 cm, Breadth=20 cm.

Perimeter of rectangular = $2 \times (\text{Length} + \text{Breadth}) = 2 \times (30 \text{cm} + 20 \text{cm}) = 2 \times 50 \text{ cm} = 100 \text{ cm}$

(d) Perimeter of triangle=Sum of all sides=30 cm+30 cm+40 cm=100 cm.

We observe all the figures have same perimeter.

- 17. Avneet buys 9 square paving slabs, each with a side of $\frac{1}{2}$ m. He lays them in the form of a square.
 - (a) What is the perimeter of his arrangement [Fig 10.7(i)]?

Perimeter of the square = $4 \times 1.5 \text{ m} = 6 \text{ m}$

(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement [(Fig 10.7 (ii)]?

Sol: Perimeter of the cross figure = $20 \times \frac{1}{2}m = 10 m$

(c) Which has greater perimeter?

Sol: The cross figure has greater perimeter.

(d) Avneet wonders if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges i.e. they cannot be broken.)

Sol:

Length= $9 \times 0.5 = 4.5$ m, Breadth=0.5 m

Perimeter= $2\times(4.5 \text{ m}+0.5 \text{ m})=2\times5 \text{ m}=10 \text{ m}.$

The amount of surface enclosed by a closed figure is called its area.

- (i) The area of one full square is taken as 1 sq unit.
- (ii) The area of one full square with side 1 cm will be 1 sq cm.

Example 10: Find the area of the shape shown in the figure 10.10.

Sol: Fully-filled squares = 3

Area covered by full squares = 3×1 sq units = 3 sq units

Half-filled squares = 3

Area covered by half squares $= 3 \times \frac{1}{2}$ sq units $= \frac{3}{2} = 1 \frac{1}{2}$ sq units

Total area =
$$3 + 1\frac{1}{2} = 4\frac{1}{2}$$
 sq units

Example 11: By counting squares, estimate the area of the figure

Sol: Full-filled squares =11

More than half-filled squares=7

Half-filled squares=3

Total area =
$$(11 + 7) \times 1$$
 sq unit + $3 \times \frac{1}{2}$ sq unit

$$= 18 + 1\frac{1}{2} = 19\frac{1}{2}$$
 sq units

Example 12: By counting squares, estimate the area of the figure 10.9 a.

Sol: Full-filled squares =1

More than half-filled squares=7

Half-filled squares=0

Total area = $(1 + 7) \times 1$ sq unit = 8 sq unit.

EXERCISE 10.2

1. Find the areas of the following figures by counting square:

(a) Full filled squares=9

Area of the figure= 9×1 sq unit=9 sq units.

(b) Full filled squares=5

Area of the figure= 5×1 sq unit=5 sq units.

(c) Full filled squares=2

Half-filled squares=4

Area of the figure $= 2 \times 1 + 4 \times \frac{1}{2} = 2 + 2 = 4$ sq units.

(d) Full filled squares=8

Area of the figure=8×1sq unit=8 sq units

(e) Full filled squares=10

Area of the figure= 10×1 sq unit=10 sq units.

(f) Full filled squares=2

Half-filled squares=4

Area of the figure $= 2 \times 1 + 4 \times \frac{1}{2} = 2 + 2 = 4$ sq units.

(g) Full filled squares=4

Half-filled squares=4

Area of the figure = $4 \times 1 + 4 \times \frac{1}{2} = 4 + 2 = 6$ sq units.

(h) Full filled squares=5

Area of the figure=5×1sq unit=5 sq units.

(i) Full filled squares=9

Area of the figure=9×1sq unit=9 sq units.

(j) Full filled squares=2

Half-filled squares=4

Area of the figure = $2 \times 1 + 4 \times \frac{1}{2} = 2 + 2 = 4$ sq units.

Area of a rectangle:

Area of a rectangle = length \times breadth

Area of a square:

Area of the square = side \times side

Example 13: Find the area of a rectangle whose length and breadth are 12 cm and 4 cm respectively.

Sol: Length=12 cm, Breadth=4 cm.

Area of the rectangle = length \times breadth

$$= 12 \text{ cm} \times 4 \text{ cm} = 48 \text{ sq cm}.$$

Example 14: Find the area of a square plot of side 8 m.

Sol: Side = 8 m

Area of the square = side \times side

$$= 8 \text{ m} \times 8 \text{ m} = 64 \text{ sq m}.$$

Example 15: The area of a rectangular piece of cardboard is 36 sq cm and its length is 9 cm. What is the width of the cardboard?

Sol: Length = 9 cm, Width=?

Area of the rectangle = 36 sq cm

length × width=36 sq cm

 $9 \times \text{width} = 36$

Width =
$$\frac{36}{9}$$
 = 4 cm

:. The width of the rectangular cardboard is 4 cm.

Example 16: Bob wants to cover the floor of a room 3 m wide and 4 m long by squared tiles. If each square tile is of side 0.5 m, then find the number of tiles required to cover the floor of the room.

Sol: Length = 4 m, Breadth=3 m

Area of the floor = length \times breadth = 4 m \times 3 m = 12 sq m

Area of one square tile = side \times side=0.5 m \times 0.5 m=0.25 sq m

Number of tiles required
$$=$$
 $\frac{\text{Area of the floor}}{\text{Area of one tile}} = \frac{12 \times 100}{0.25 \times 100} = \frac{1200}{25} = 48$

Example 17: Find the area in square metre of a piece of cloth 1m 25 cm wide and 2 m long.

Sol: Length=2 m, Breadth=1 m 25 cm=1.25 m

Area of the cloth = length \times breadth

$$=2 \text{ m} \times 1.25 \text{ m} = 2.50 \text{ sq.m}$$

EXERCISE 10.3

1. Find the areas of the rectangles whose sides are:

(a) 3 cm and 4 cm

Sol: Length=3 cm, Breadth=4 cm.

Area of the rectangle = length \times breadth = 3 cm \times 4 cm=12 sq cm

(b) 12 m and 21 m

Sol: Length=12 m, Breadth=21 m.

Area of the rectangle = length \times breadth = 12 cm \times 21 cm=252 sq m

(c) 2 km and 3 km

Sol: Length=2 km, Breadth=3 km.

Area of the rectangle = length \times breadth = 2 km \times 3 km = 6 sq km

(d) 2 m and 70 cm

Sol: Length=2 m, Breadth=70 cm=0.70 m.

Area of the rectangle = length \times breadth = 2 m \times 0.70 m=1.40 sq cm

- 2. Find the areas of the squares whose sides are:
- (a) 10 cm

Sol: Side= 10 cm

Area of the square=side \times side

$$=10 \text{ cm} \times 10 \text{ cm} = 100 \text{ sq cm}$$

(b) 14 cm

Sol: Side= 14 cm

Area of the square=side \times side

$$=14 \text{ cm} \times 14 \text{ cm} = 196 \text{ sq cm}$$

(c) 5 m

Sol: Side= 5 m

Area of the square=side \times side

$$=5 \text{ m}\times5 \text{ m}=25 \text{ sq m}$$

- 3. The length and breadth of three rectangles are as given below: Which one has the largest area and which one has the smallest?
 - (a) 9 m and 6 m, (b) 17 m and 3 m. (c) 4 m and 14 m
- Sol: Area of the rectangle (a) = $9 \text{ m} \times 6 \text{ m} = 54 \text{ sq m}$

Area of the rectangle (b) =17 m×3 m=51 sq m

Area of the rectangle(c) =4 m \times 14 m=56 sq m

The rectangle (c) has the largest area and (b) has the smallest area.

- 4. The area of a rectangular garden 50 m long is 300 sq m. Find the width of the garden.
- Sol: The area of a rectangular garden =300 sq m.

$$long \times width = 300 sqm$$

$$50 \times \text{width} = 300$$

$$width = \frac{300}{50} = 6 m$$

The width of the garden=6 m

- 5. What is the cost of tiling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹8 per hundred sq m.?
- Sol: Length=500m, Breadth=200 m

Area of rectangular plot=length \times breadth =500 m \times 200 m=100000 sq m

Cost of tiling per 100 sq m=₹8

Cost of tiling per 100000
$$sq\ m = \frac{100000 \times 8}{100} = ₹8000$$

The cost of tiling a rectangular plot of land=₹8000

6. A table-top measures 2 m by 1 m 50 cm. What is its area in square metres?

Area of table top= length \times breadth=2 m \times 1.50 m=3 sq m

7. A room is 4 m long and 3 m 50 cm wide. How many square metres of carpet is needed to cover the floor of the room?

Sol: Length =
$$4 \text{ m}$$
, Bredth= 3 m 50 cm= 3.50 m

Area of room= length \times breadth=4 m \times 3.50 m=14 sq m

The area of required carpet=14 sq m

8. A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find the area of the floor that is not carpeted.

Sol: Length
$$=5$$
 m, breadth $=4$ m

Area of floor= length \times breadth=5 m \times 4 m=20 sq m

Side of square carpet=3 m

Area of square carpet=side \times side=3 m \times 3 m=9 sq m

The area of the floor that is not carpeted =20 sq m - 9 sq m = 11 sq m

9. Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

Sol: Side of square flower bed=1 m

Area of flower bed=side \times side=1 m \times 1 m=1 sq m

Area of 5 flower beds= 5×1 sq m=5 sq m

Area of land= $5 \text{ m} \times 4 \text{ m} = 20 \text{ sq m}$

The area of the remaining part of the land = 20 sq m - 5 sq m = 15 sq m

10. By splitting the following figures into rectangles, find their areas (The measures are given in centimetres).

Sol: (a) Area of rectangle (I)= $2\times3=6$ sq cm

Area of rectangle (II)= $4\times1=4$ sq cm

Area of rectangle (III)= $2\times3=6$ sq cm

Area of rectangle (IV)= $4\times3=12$ sq cm

Total area of the figure(a)=6+4+6+12=28 sq cm

(b) Area of rectangle (I)= $5\times1=5$ sq cm

Area of rectangle (II)= $2\times1=2$ sq cm

Area of rectangle (III)= $2\times1=2$ sq cm

Total area of the figure(b)=5+2+2=9 sq cm

11. Split the following shapes into rectangles and find their areas. (The measures are given in centimetres)

Sol: (a) Area of rectangle (I)= $10\times2=20$ sq cm

Area of rectangle (II)= $10\times2=20$ sq cm

Total area of the figure=20+20=40 sq cm

(b) Area of square (I)= $7\times7=49$ sq cm

Area of square (II)= $7\times7=49$ sq cm

Area of rectangle (III)= $21 \times 7 = 147$ sq cm

Total area of the figure=49+49+147=245 sq cm

(c) Area of rectangle (I)= $5\times1=5$ sq cm

Area of rectangle (II)= $4\times1=4$ sq cm

Total area of the figure=5+4=9 sq cm

- 12. How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively: (a) 100 cm and 144 cm (b) 70 cm and 36 cm.
- Sol: Area of tile=12 cm×5 cm
 - (a) Area of rectangular region=100 cm×144 cm

The number of tiles needed =
$$\frac{\text{Area of rectangular region}}{\text{Area of tile}} = \frac{100 \times 144}{12 \times 5} = 20 \times 12 = 240$$

(b) Area of rectangular region=70 cm×36 cm

The number of tiles needed =
$$\frac{\text{Area of rectangular region}}{\text{Area of tile}} = \frac{70^{14} \times 36^3}{12 \times 5} = 14 \times 3 = 42$$

Please download VI to X class all maths notes from website

https://sureshmathsmaterial.com/

