

8.QUADRILATERALS

NCERT:2024-25

BALABHADRA SURESH-AMALAPURAM-9866845885 Page 1

Proof: Let ABCD be a parallelogram and AC be a diagonal

In \triangle ABC and \triangle CDA,

BC || AD and AC is a transversal.

 \angle BCA = \angle DAC (Pair of alternate angles)

AB || DC and AC is a transversal.

 \angle BAC = \angle DCA (Pair of alternate angles)

AC = CA (Common)

 $\Delta ABC \cong \Delta CDA (ASA rule)$

Diagonal AC divides parallelogram ABCD into two congruent triangles ABC and CDA.

Theorem 8.2 : In a parallelogram, opposite sides are equal.

Proof: Let ABCD be a parallelogram and AC be a diagonal.

 $\Delta ABC \cong \Delta CDA (ASA rule)$

So, AB = DC and BC = AD (CPCT)

Theorem 8.3 : If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.

Proof: ABCD be a quadrilateral and AB = DC and BC = AD

In \triangle ABC and \triangle CDA

AB = DC (given)

BC = AD (given)

AC=AC (common)

 Δ ABC \cong Δ CDA (SSS congruence rule)

 \angle BAC = \angle DCA (CPCT)

Alternate interior angles are equal \Rightarrow AB || CD

Similarly BC || DA

Each pair of opposite sides are parallel.

ABCD is a parallelogram.

Theorem 8.4 : In a parallelogram, opposite angles are equal.

Proof: ABCD is a parallelogram.

AB || CD and AC is transversal

в

8.QUADRILATERALS

NCERT:2024-25

BALABHADRA SURESH-AMALAPURAM-9866845885 Page 4

(see Fig.). Show that (i) \angle DAC = \angle BCA and (ii) ABCD is a parallelogram.

NCERT:2024-25

Sol: (i) \triangle ABC is isosceles in which AB = AC (Given)

So, $\angle ABC = \angle ACB$ (Angles opposite to equal sides)

Also, \angle PAC = \angle ABC + \angle ACB (Exterior angle of a triangle)

or, $\angle PAC = 2 \angle ACB \rightarrow (1)$

Now, AD bisects \angle PAC.

So, \angle PAC = 2 \angle DAC \rightarrow (2)

 $2 \angle DAC = 2 \angle ACB$ [From (1) and (2)]

 \angle DAC = \angle BCA

(ii) \angle DAC = \angle ACB i.e alternate interior angles are equal.

 \Rightarrow BC ||AD

Also, BA || CD (Given)

Now, both pairs of opposite sides of quadrilateral ABCD are parallel.

So, ABCD is a parallelogram.

Example 4 : Two parallel lines l and m are intersected by a transversal p (see Fig. 8.9). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Sol: PS || QR and transversal p intersects them at points A and C .

The bisectors of \angle PAC and \angle ACQ intersect at B and bisectors of \angle ACR and \angle SAC intersect at D.

Now, \angle PAC = \angle ACR (Alternate angles as $l \parallel m$ and p is a transversal)

$$\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$$

i.e., \angle BAC = \angle ACD \Rightarrow alternate interior angles are equal.

AB || DC

Similarly, BC || AD (Considering \angle ACB and \angle CAD)

Therefore, quadrilateral ABCD is a parallelogram.

 \angle PAC + \angle CAS = 180° (Linear pair)

$$\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = \frac{1}{2} \times 180^\circ = 90^\circ$$

$$\angle$$
 BAC + \angle CAD = 90°

 $\angle BAD = 90^{\circ}$

B

2. How that the diagonals of a square are equal and bisect each other at right angles.

Sol: Let ABCD is square.

 $\Delta ABC \cong \Delta DCB(SAS rule)$

 $AC = BD (By CPCT) \Rightarrow Diagonals are equal$

 $\Delta AOB \cong \Delta COD$ (ASA congruence rule)

 $\therefore AO = CO \text{ and } OB = OD \text{ (by CPCT)}$

 \Rightarrow Diogonals are bisect each other

 $\Delta AOB \cong \Delta COB$ (SSS congruence rule)

 $\angle AOB = \angle COB (by CPCT)$

But $\angle AOB + \angle COB = 180^{\circ}$ (Linear pair)

 $\angle AOB + \angle AOB = 180^{\circ}$

 $2 \angle AOB = 180^{\circ}$

$$\angle AOB = 90^{\circ}$$

Diagonals are bisect each other at right angles.

3. Diagonal AC of a parallelogram ABCD bisects ∠ A Show that (i) it bisects ∠ C also, (ii) ABCD is a rhombus.

Sol: (i) $\angle BAC = \angle DAC$ (AC bisects $\angle A$) \rightarrow (1)

ABCD is a parallelogram $=>AB \parallel DC$ and $BC \parallel AD$

 \angle BAC= \angle DCA (Alternate interior angles) \rightarrow (2)

 \angle DAC = \angle BCA (Alternate interior angles) \rightarrow (3)

From (1),(2),(3)

∠DCA=∠BCA

Hence AC bisects \angle C also.

(ii) In \triangle BAC

 $\angle BAC = \angle BCA \text{ (From (1),(2),(3))}$

AB=BC (opposite sides of equal angles are equal) \rightarrow (4)

But AB=DC and BC=AD (Opposite sides of parallelogram) \rightarrow (5)

From (4) ,(5)

AB = BC = CD = DA

AB=CD (Opposites of a parallelogram are equal)

BQ=DP (Given)

 $\triangle AQB \cong \triangle CPD$ (SAS congruence rule)

(iv) $\triangle AQB \cong \triangle CPD$ (From (iii))

 $\therefore AQ = CP (CPCT)$

(v) In quadrilateral APCQ

AP=CQ and AQ=CP

Hence APCQ is a parallelogram.

6. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.13). Show that (i) \triangle APB $\cong \triangle$ CQD (ii) AP = CQ

Sol: (i) In \triangle APB and \triangle CQD

 $\angle APB = \angle CQD = 90^{\circ}$

AB=CD (opposite sides of parallelogram are equal)

 $\angle ABD = \angle CDQ$ (AB||CD, alternate interior angles)

 $\therefore \Delta APB \cong \Delta CQD$ (AAS congruence rule)

(ii) $\Delta APB \cong \Delta CQD$ (from (i))

 $\therefore AP = CQ (CPCT)$

7. ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that (i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Sol: Draw AE ||DC and CE||DA

ADCE is a parallelogram

AD=CE (opposite sides of ADCE)

AD = BC (given)

∴BC=CE

 $\angle CEB = \angle CBE$ (equal sides opposite angles are equal)

 $\angle A + \angle CEB = 180^{\circ}$ (co-interior angles are supplementary)

 $\angle A + \angle CBE = 180^{\circ} (\angle CEB = \angle CBE) \rightarrow (1)$

 $\angle B + \angle CBE = 180^{\circ}$ (Linear pair) \rightarrow (2)

8.QUADRILATERALS

From (1) and (2)

∠A=∠B

(ii) $\angle A + \angle D = 180^{\circ}$ (co-interior angles) \rightarrow (3)

 $\angle B + \angle C = 180^{\circ}$ (co-interior angles) \rightarrow (4)

From (3) and (4)

 $\angle B + \angle C = \angle A + \angle D$

But $\angle A = \angle B$

∴∠C=∠D

(iii) In \triangle ABC and \triangle BAD,

BC=AD (given)

AB=BA (common side)

 $\angle B = \angle A$ (From (i))

 $\triangle ABC \cong \triangle BAD$ (SAS congruence rule)

(iv) $\triangle ABC \cong \triangle BAD$ (from (iii))

 \therefore AC=BD (by CPCT)

The Mid-point Theorem

Theorem 8.8 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side.

Proof: In \triangle ABC, E and F are mid-points of AB and AC respectively and draw CD || BA.

In ΔAEF , ΔCDF

 $\angle AEF = \angle CDF$ (Alternate interior angles)

 $\angle EAF = \angle FCD$ (Alternate interior angles)

AF = FC (F is mid point of AC)

 $\triangle AEF \cong \triangle CDF (ASA rule)$

EF = DF and BE = AE = DC (CPCT)

∴ BCDE is a parallelogram. So, EF || BC

Theorem 8.9 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

Proof: In \triangle ABC, E is midpoint of AB.

IX CLASS-MATHEMATICS 8.QUADRILATERALS NCERT:2024-25 Draw a line *l* passing through E and parallel to *BC*. The line intersects AC at F. Construct CD || BA EB || DC and ED || BC \Rightarrow EBCD is a parallelogram. BE=DC (opposite sides of parallelogram) But BE=AE (E is midpoint of AB) $\therefore AE = CD \rightarrow (1)$ In $\triangle AFE$ and $\triangle CFD$ $\angle EAF = \angle DCF$ (BA || CD and AC is transversal, alternate interior angles) $\angle AEF = \angle CDF$ (BA || CD and ED is transversal, alternate interior angles) AE=CD (from (1)) $\Delta AFE \cong \Delta CFD$ (ASA congruence rule) \therefore AF = CF (CPCT) \Rightarrow *l* bisects AC. Example 6 : In \triangle ABC, D, E and F are respectively the mid-points of sides AB, BC and CA (see Fig. 8.18). Show that \triangle ABC is divided into four congruent triangles by joining D, E and F. Solution: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side. DE || AC , DF || BC and EF || AB

Therefore ADEF, BDFE and DFCE are all parallelograms.

Now DE is a diagonal of the parallelogram BDFE,

Therefore, $\triangle BDE \cong \triangle FED$

Similarly $\triangle DAF \cong \triangle FED$ and $\triangle EFC \cong \triangle FED$

So, all the four triangles are congruent

Example 7: l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see Fig. 8.19). Show that l, m and n cut off equal intercepts DE and EF on q also.

Sol: Let us join A to F intersecting *m* at G.

The trapezium ACFD is divided into two triangles; namely \triangle ACF and \triangle AFD.

D

Page 11

С

O

In $\triangle ACF$, it is given that B is the mid-point of AC (AB = BC)

and BG || CF (since m || n).

So, G is the mid-point of AF .

Now, in $\triangle AFD$, we can apply the same argument as G is the mid-point of AF, GE || AD, so E is the mid-point of DF,

i.e., DE = EF

 \Rightarrow *l*, *m* and *n* cut off equal intercepts on *q* also.

EXERCISE 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that :

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(ii) PQ = SR

(iii) PQRS is a parallelogram.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

(i) In ΔABC , P and Q are midpoints of AB and BC.

PQ || AC and PQ =
$$\frac{1}{2}$$
 AC \rightarrow (1)

(ii) In \triangle ADC , S and R are midpoints of DA and DC.

PQ || AC and PQ = $\frac{1}{2}$ AC \rightarrow (2)

From (1) and (2)

PQ = SR

(iii) From (1) and (2)

SR || AC and PQ || AC

- \Rightarrow PQ ||SR also PQ = SR
- \therefore PQRS is a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In ΔABC , P and Q are midpoints of AB and BC.

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2} \text{ AC} \rightarrow (1)$$

In ΔADC , S and R are midpoints of AD and DC.

$$SR \parallel AC \text{ and } SR = \frac{1}{2} AC \rightarrow (2)$$

D

From (1) and (2) : $PQ \parallel SR$ and PQ = SR

Similarly : $PS \parallel QR$ and PS = QR

 \therefore PQRS is a parallelogram.

 $MO \parallel PN$ and $PM \parallel NO$

PMON is also a parallelogram.

 \angle MPN= \angle MON (opposite angles in a parallelogram)

But ∠MON=90⁰ (Diagonals of a rhombus perpendicular to each other)

 $\therefore \angle MPN = 90^{\circ}$

In parallelogram PQRS one angle is 90^o

So, PQRS is a rectangle.

- **3.** ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- **Sol:** We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In ΔABC , P and Q are midpoints of AB and BC.

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2} \text{ AC} \rightarrow (1)$$

In $\triangle ADC$, S and R are midpoints of AD and DC.

SR || AC and SR =
$$\frac{1}{2}$$
 AC \rightarrow (2)

From (1)and (2) : $PQ \parallel SR$ and $PQ = SR = \frac{1}{2}AC$ Similarly : $PS \parallel QR$ and $PS = QR = \frac{1}{2}BD$ Also, AC = BD (Diagonals of a rectangle AC, BD are equal)

 $\therefore PQ=QR=RS=SP$

So, PQRS is a rhombus.

- 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.21). Show that F is the mid-point of BC.
- **Sol:** We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

In $\triangle ABD$, EO $\parallel AB$ and E is mid point of AD

в

In $\triangle CBD$, $OF \parallel CD$ and O is mid point of BD

 \Rightarrow F is mid point of BC

- 5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.22). Show that the line segments AF and EC trisect the diagonal BD.
- Sol: E and F are the mid-points of sides AB and CD

$$DF = FC = \frac{1}{2}DC$$
 and $AE = EB = \frac{1}{2}AB$

 $AB \parallel DC$ and AB = CD (ABCD is a parallelogram)

$$\Rightarrow AE \parallel FC \text{ and } \frac{1}{2}AB = \frac{1}{2}CD$$

 $\Rightarrow AE \parallel FC \text{ and } AE = FC$

 \therefore AEFC is a parallelogram .

$$\Rightarrow AF \parallel EC$$

In $\triangle ABP$, EQ $\parallel AP$ and E is midpoint of AB.

$$\Rightarrow$$
 Q is midpoint of BP

$$\Rightarrow BQ = QP \rightarrow (1)$$

In ΔDQC , FP $\parallel CQ$ and F is midpoint of DC.

$$\Rightarrow$$
 P is midpoint of DQ

$$\Rightarrow$$
 QP = PD \rightarrow (2)

From (1) and (2)

BQ = QP = PD

 \therefore The line segments AF and EC trisect the diagonal BD.

6. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC

(iii)
$$CM = MA = \frac{1}{2}AB$$

Sol: We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

(i) In $\triangle ABC$, MD || BC and M is midpoint of AB

 \Rightarrow D is midpoint of AC.

(ii) MD || BC and AC is transversal

C

Ο

M

D

В

С

ASS-MATHEMATICS

$$\frac{ASS-MATHEMATICS}{MDC + \angle BCD} = 180^{\circ}(Co - interior angles are supplementary)$$

$$\frac{AMDC + 90^{\circ} = 180^{\circ}}{(MDC = 180^{\circ} - 90^{\circ} = 90^{\circ})}$$

$$\frac{AMDC + 180^{\circ} - 90^{\circ} = 90^{\circ}}{(MD \perp AC)}$$

$$AD = DC (D \text{ is midpoint of AC})$$

$$\frac{A D = DC (D \text{ is midpoint of AC})}{(MD = ACDM(= 90^{\circ})}$$

$$AD = DC (D \text{ is midpoint of AC})$$

$$AAMD \cong \Delta CMD (SAS congruence rule)$$

$$AMD \cong \Delta CMD (SAS congruence rule)$$

$$AM = CM (By CPCT)$$

$$But AM = \frac{1}{2} AB (M \text{ is mid point of AB})$$

$$\therefore CM = MA = \frac{1}{2} AB$$
Please download VI to X class all maths notes from website https://sureshmathsmaterial.com/

BALABHADRA SURESH-AMALAPURAM-9866845885

Page 15