FORMATIVE ASSESSMENT - II - 2023 - 24 MATHEMATICS 20

		(English N	Aedium)		
Class: X]		(Max. Marks: 20) https://www.sureshmathsmateria		[Time : 45 Min. al.com	
Name	of the Stude	ent :	•••••	Roll No. :	
I. S	lve the following problems.			4 x 1 = 4	
1.	. Statement	1: The distance betw	veen two points		
	$(x_1, y_1), (x_1, y_1)$	(x_2, y_2) is $\sqrt{(x_2 - x_1)^2}$	$+(y_2-y_1)^2$	[]	
	Statement 2 : The distance between origin and (x, y) is $\sqrt{(x^2 + y^2)}$				
		ent 1 only correct atements are correct	B) Statement 2 D) Both staten	•	
2.	. If x + 2y -	3 = 0 and 5x - ky + 8	3 = 0 are parallel 1	ines then $k = [$	
	A) -10	B) 5	C) 10	D) - 5	
3.	3. The shape of the quadratic polynomial is			[]	
	A) line	B) circle	C) parabola	D) semi circle	
4.	. The discrin	ninant of the quadrati	c equation $2x^2 - 4$	4x + 3 = 0 is	
II. S	olve the foll	owing problems.		2 x 2 = 4	
	pencils and together co		Rs.50 whereas 7	pencils and 5 pens	
6.		alue of 'k', the equation $k = 0$ represent coinc	•	0 and	
III. S	Solve the foll	1 x 4 = 4			
7.	. Find two n	umbers whose sum is	27 and product is	s 182.	
IV. S	Solve the foll	lowing problem. http	ps://www.sureshm	nathsmaterial 1 c x n 8 = 8	
8.	$x^3 + 3x^2$	$\frac{1}{2}$, -1 and -3 are the zeconflicients.	eroes of the cubic e relation between	polynomial n the zeroes	

(OR)

b) Find the Coordinates of the points of trisection of the line segment joining the points A(2, -2) and B(-7, 4)

https://www.sureshmathsmaterial.com

FORMATIVE ASSESSMENT-2-2023-24

X CLASS-MATHEMATICS-SOLUTIONS

Prepared by :BALABHADRA SURESH

1. Statement 1: The distance between two points

[c]

$$(x_1, y_1), (x_2, y_2)$$
 is $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Statement 2: The distance between origin and (x, y) is $\sqrt{x^2 + y^2}$

A) Statement 1 only correct

- B) Statement 2 only correct
- C) Both statements are correct

- D) Both statements are wrong
- 2. If x + 2y 3 = 0 and 5x ky + 8 = 0 are parallel lines then k =

[A]

- **A) 10** B) 5
- C) 10

Sol:
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \Rightarrow \frac{1}{5} = \frac{2}{-k} \Rightarrow -k = 10 \Rightarrow k = -10$$

3. The shape of the quadratic polynomial is_

[C]

- A) line
- B) circle
- C) parabola
- D) semi circle
- 4. The discriminant of the quadratic equation $2x^2 4x + 3 = 0$ is -8
- **Sol**: Discriminant = $b^2 4ac = (-4)^2 4 \times 2 \times 3 = 16 24 = -8$
- 5. Represent the statement as pair of linear equations in two variables "5pencils and 7 pens together cost Rs.50 whereas 7 pencils and 5 penstogether cost Rs. 46."
- Sol: Let the cost of pencil=₹ x and the cost of pen=₹ y

5 pencils + 7 pens =
$$50 \Rightarrow 5x + 7y = 50 \rightarrow (1)$$

7 pencils + 5 pens =
$$46 \Rightarrow 7x + 5y = 46 \rightarrow (2)$$

6. For what value of 'k', the equations 3x + 4y + 2 = 0 and 9x + 12y + k = 0 represent coincident

Sol:
$$3x + 4y + 2 = 0$$
; $a_1 = 3$, $b_1 = 4$, $c_1 = 2$

$$a_1 = 3$$
, $b_1 = 4$, $c_1 = 2$

$$9x + 12y + k = 0$$

$$9x + 12y + k = 0$$
; $a_2 = 9$, $b_2 = 12$, $c_2 = k$

If given pair of equations represents coincident lines then

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \Rightarrow \frac{3}{9} = \frac{4}{12} = \frac{2}{k} \Rightarrow \frac{1}{3} = \frac{1}{3} = \frac{2}{k}$$

$$\Rightarrow$$
 k \times 1 = 2 \times 3

$$\Rightarrow k = 6$$

- 7. Find two numbers whose sum is 27 and product is 182.
- Sol: Let one number = x, The second number = 27 x

$$x(27 - x) = 182$$

$$27x - x^2 = 182$$

$$-x^2 + 27x - 182 = 0$$

$$x^2 - 27x + 182 = 0$$

$$x^2 - 13x - 14x + 182 = 0$$

$$x(x-13) - 14(x-13) = 0$$

$$(x - 13)(x - 14) = 0$$

$$x - 13 = 0$$
 or $x - 14 = 0$

$$x = 13$$
 or $x = 14$

If x = 13 the required numbers are 13 and 14.

If x = 14 the required numbers are 14 and 13.

8. a) Verify 1, -1 and -3 are the zeroes of the cubic polynomial $x^3 + 3x^2 - x - 3$ and check the relation between the zeroesand the coefficients.

Sol:
$$p(x) = x^3 + 3x^2 - x - 3$$

$$p(1) = (1)^3 + 3(1)^2 - 1 - 3$$
$$= 1 + 3 - 1 - 3 = 4 - 4 = 0$$

$$p(-1) = (-1)^3 + 3(-1)^2 - (-1) - 3$$

$$=-1+3+1-3=4-4=0$$

$$p(-3) = (-3)^3 + 3(-3)^2 - (-3) - 3$$

$$= -27 + 27 + 3 - 3 = 30 - 30 = 0$$

$$p(1) = 0, p(-1) = 0$$
 and $p(-3) = 0$

Coefficient of $x^3 = a = 1$

Coefficient of $x^2 = b = 3$

Coefficient of x = c = -1

Constant term = d = -3

 \therefore 1, -1 and -3 are the zeroes of the cubic polynomial $x^3 + 3x^2 - x - 3$.

Now
$$\alpha = 1$$
, $\beta = -1$ and $\gamma = -3$

$$\alpha + \beta + \gamma = 1 + (-1) + (-3) = -3 = \frac{-3}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 1 \times (-1) + (-1) \times (-3) + (-3) \times 1 = -1 + 3 - 3 = -1 = \frac{-1}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = 1 \times (-1) \times (-3) = 3 = \frac{-(-3)}{1} = \frac{-d}{a}$$

b) Find the Coordinates of the points of trisection of the line segmentjoining the points A(2,-2) and B(-7,4)

Sol: A(2,-2) and B(-7, 4).

$$(x_1, y_1)$$
 (x_2, y_2)

Let P divides AB internally in the ratio 1 : 2.= m_1 : m_2

$$P(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$= \left(\frac{1(-7) + 2(2)}{1 + 2}, \frac{1(4) + 2(-2)}{1 + 2}\right)$$

$$= \left(\frac{-7 + 4}{3}, \frac{4 - 4}{3}\right) = \left(\frac{-3}{3}, \frac{0}{3}\right) = (-1,0)$$

Let Q divides AB internally in the ratio $2:1=m_1:m_2$

$$Q(x,y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$

$$= \left(\frac{2(-7) + 1(2)}{2 + 1}, \frac{2(4) + 1(-2)}{2 + 1}\right)$$

$$= \left(\frac{-14 + 2}{3}, \frac{8 - 2}{3}\right) = \left(\frac{-12}{3}, \frac{6}{3}\right) = (-4,2)$$

Required trisectional points are P(-1, 0) and Q(-4, 2).

B(-7.4)