	CHAPTER		ASS-CBSE (20223-24)		
	2	LINEAR EQUATION	ONS IN ONE VARIABLE (Notes)		
		PREPARED BY : BA	LABHADRA SURESH-9866845885		
	Expression: An expression is a constant or a variable or combination of these two, using the				
	mathematical operations $(+, -, \times, \div)$ i.e., terms are added to form expressions				
2.	Algebraic expression: If an expression has at least one algebraic term, then that expression is				
	Algebraic expression.				
	Ex: d, a + 3, 5c - 4, $2x^2$ + 3x - 6, $\frac{x}{y}$ are Algebraic expressions.				
8.	Coefficient: A coefficient may be either a numerical or an algebraic factor or a product of both in a				
	term.				
•	The terms having the same algebraic factors are like terms and the terms having different algebrai				
	factors are unlike terms.				
	Examples:				
	(i). The terms $2x$, $-3x$ and $4x$ are like terms, as they have same algebraic factor 'x'				
	(ii). The terms 5t and 8s are unlike terms, as they have different algebraic factors t and s				
•	Monomial: An expression with only one term is called Monomial.				
	Binomial: An expression which contains two unlike terms is called a Binomial.				
•	Trinomial: An expression which contains three unlike terms is called a Trinomial.				
}.	Polynomial : An algebraic expression in which the exponent of variable is a non-negative integer is called a Polynomial				
	In an expression, if the terms are arranged in such a way that the exponents of the terms are in				
	descending order then the expression is said to be in standard form.				
0.	Linear equations in one variable : An equation of the form $ax + b = 0$ or $ax = b$ where a, b are				
	constants and $a \neq 0$ is called linear equation in one variable or simple equation.				
1.	If the degree of an equation is one then it is called a linear equation. $(2x-7)=(35)$				
2.	The expression on the left of the equality sign is called the L.H.S (Left Hand Side) \checkmark			\checkmark \checkmark	
	of the equation and right of the equality sign is called R.H.S (Right Hand Side) of L.H.S R.H.S				
	the equation.				
3.	The value which when substituted for the variable in the given equation makes L.H.S. = R.H.S. is				
		called a solution or root of the given equation.			
4.	When we transp				
	'+' quantity beco		'×' quantity becomes '÷'quan	•	
'—' quantity becomes '+'quantity '÷' quantity becomes 'בquantity					
			RA SURFSH-9866845885	Ροσο 1	

BALABHADRA SURESH-9866845885

Example 1: Find the solution of 2x - 3 = 7

Sol: Given equation: 2x - 3 = 7(*Transposing* - 3 to *R*. *H*. *S* it become + 3) 2x = 7 + 3. 2x = 10Divide both sides by 2 $\frac{2x}{2} = \frac{10}{2}$ x = 5Example 2: Solve $5x + \frac{7}{2} = \frac{3}{2}x - 14$ Sol: Given equation: $5x + \frac{7}{2} = \frac{3}{2}x - 14$

Multiply both sides by 2

$$2 \times \left(5x + \frac{7}{2}\right) = 2 \times \left(\frac{3}{2}x - 14\right)$$

$$(2 \times 5x) + \left(2 \times \frac{7}{2}\right) = \left(2 \times \frac{3}{2}x\right) - (2 \times 14)$$

$$10x + 7 = 3x - 28$$

$$10x - 3x = -28 - 7 \text{ (transposing } 3x \text{ to LHS and } + 7 \text{ to RHS}\text{)}$$

$$7x = -35$$
Divide both sides by 7
$$\frac{7x}{7} = \frac{-35}{7}$$

$$x = -5$$

$$\therefore \text{ Solution } x = -5$$

EXERCISE 2.3

Solve the following equations and check your results.

```
1. 3x = 2x + 18
Sol: 3x = 2x + 18
3x - 2x = 18
x = 18
Check:
Putting x=18
LHS = 3 \times 18 = 54
RHS = 2 \times 18 + 18 = 36 + 18 = 54
```

LHS = RHSHence verified 2. 5t - 3 = 3t - 5Sol: 5t - 3 = 3t - 55t - 3t = -5 + 32t = -2 $t = \frac{-2}{2} = -1$ 3. 5x + 9 = 5 + 3xSol: 5x + 9 = 5 + 3x5x - 3x = 5 - 92x = -4 $x = \frac{-4}{2} = -2$ 4.4z + 3 = 6 + 2zSol: 4z + 3 = 6 + 2z4z - 2z = 6 - 32z = 3 $z = \frac{3}{2}$ 5.2x - 1 = 14 - xSol: 2x - 1 = 14 - x2x + x = 14 + 13x = 15 $x = \frac{15}{3} = 5$ 6.8x + 4 = 3(x - 1) + 7Sol: 8x + 4 = 3(x - 1) + 78x + 4 = 3x - 3 + 78x + 4 = 3x + 48x - 3x = 4 - 45x = 0x = 0 $7.x = \frac{4}{5}(x+10)$

Check: Putting t = -1LHS = 5(-1) - 3 = -5 - 3 = -8 RHS = 3(-1) - 5 = -3 - 5 = -8 LHS = RHS ∴ Hence verified

Check: Putting x = -2LHS = 5(-2) + 9 = -10 + 9 = -1 RHS = 5 + 3(-2) = 5 - 6 = -1 LHS = RHS, Hence verified

Check: Putting $z = \frac{3}{2}$ LHS = $4\left(\frac{3}{2}\right) + 3 = 6 + 3 = 9$ RHS = $6 + 2\left(\frac{3}{2}\right) = 6 + 3 = 9$ LHS = RHS, Hence verified.

Check: Putting x = 5LHS = 2(5) - 1 = 10 - 1 = 9 RHS = 14 - 5 = 9 LHS = RHS . Hence verified

Check:Putting x = 0LHS = 8(0) + 4 = 0 + 4 = 4 RHS = 3(0 - 1) + 7 = -3 + 7 = 4 LHS = RHS Hence verified.

Sol:
$$x = \frac{4}{5}(x + 10)$$

 $5x = 4(x + 10)$
 $5x = 4x + 40$
 $5x - 4x = 40$
 $x = 40$
8. $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$
Sol: $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$
Multiply with '15'
 $15 \times \left(\frac{2x}{3} + 1\right) = 15 \times \left(\frac{7x}{15} + 3\right)$
 $15 \times \frac{2x}{3} + 15 \times$
 $= 15 \times \frac{7x}{15} + 15 \times 3$
 $10x + 15 = 7x + 45$
 $10x - 7x = 45 - 15$
9. $2y + \frac{5}{3} = \frac{26}{3} - y$
Multiply with '3'
 $3 \times \left(2y + \frac{5}{3}\right) = 3 \times \left(\frac{26}{3} - y\right)$
 $3 \times 2y + 3 \times \frac{5}{3} = 3 \times \frac{26}{3} - 3 \times y$
 $6y + 5 = 26 - 3y$
 $6y + 3y = 26 - 5$
 $9y = 21$
 $y = \frac{21}{9} = \frac{7}{3}$
10. $3m = 5m - \frac{8}{5}$
Sol: $5m - \frac{8}{5} = 3m$
 $5m - 3m = \frac{8}{5}$

Check: Putting x = 40LHS = 40 RHS = $\frac{4}{5}(40 + 10) = \frac{4}{5} \times 50 = 4 \times 10 = 40$ LHS = RHS, Hence verified.

$$3x = 30$$

$$x = \frac{30}{3} = 10$$

Check: Putting $x = 10$
LHS = $\frac{2 \times 10}{3} + 1 = \frac{20}{3} + 1 = \frac{23}{3}$
RHS = $\frac{7 \times 10}{15} + 3 = \frac{14}{3} + 3 = \frac{23}{3}$
LHS = RHS
Hence verified

Check: Putting y = 7LHS = $2\left(\frac{7}{3}\right) + \frac{5}{3} = \frac{14}{3} + \frac{5}{3} = \frac{19}{3}$ RHS = $\frac{26}{3} - \frac{7}{3} = \frac{26 - 7}{3} = \frac{19}{3}$ LHS = RHS Hence verified.

 $m = \frac{8}{5 \times 2} = \frac{4}{5}$ Check: Putting $m = \frac{4}{5}$

 $LHS = 3 \times \frac{4}{5} = \frac{12}{5}$ RHS = $5 \times \frac{4}{5} - \frac{8}{5} = \frac{20}{5} - \frac{8}{5} = \frac{12}{5}$ LHS = RHS**Reducing Equations to Simpler Form** Ex 16: Solve $\frac{6x+1}{3} + 1 = \frac{x-3}{6}$ Sol: LCM of 3,6=6 Multiplying both sides of the equation by 6 $6 \times \left(\frac{6x+1}{3}\right) + 6 \times 1 = 6 \times \left(\frac{x-3}{6}\right)$ 2(6x + 1) + 6 = x - 312x + 2 + 6 = x - 312x + 8 = x - 312x - x = -3 - 811x = -11x = -1Ex 17: Solve $5x - 2(2x - 7) = 2(3x - 1) + \frac{7}{2}$ Sol: $5x - 2(2x - 7) = 2(3x - 1) + \frac{7}{2}$ $5x - 4x + 14 = 6x - 2 + \frac{7}{2}$ $x + 14 = 6x - 2 + \frac{7}{2}$ $14 + 2 - \frac{7}{2} = 6x - x$ $16 - \frac{7}{2} = 5x$ $5x = \frac{32-7}{2} = \frac{25}{2}$ $x = \frac{25}{2 \times 5} = \frac{5}{2}$

EXERCISE 2.5

Solve the following linear equations.

1.
$$\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$$

Sol: $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$

Hence verified.

Check: put
$$x = -1$$

 $LHS = \frac{6(-1)+1}{3} + 1$
 $= \frac{-6+1}{3} + 1 = \frac{-5}{3} + \frac{3}{3} = \frac{-2}{3}$
 $RHS = \frac{-1-3}{6} = \frac{-4}{6} = \frac{-2}{3}$
 $LHS = RHS$

BALABHADRA SURESH-9866845885

 $\frac{5x-2}{10} = \frac{4x+3}{12}$ 12(5x-2) = 10(4x+3) $12 \times 5x - 12 \times 2 = 10 \times 4x + 10 \times 3$ 60x - 24 = 40x + 3060x - 40x = 30 + 2420x = 54 $x = \frac{54}{20} = \frac{27}{10}$ 2. $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$ sol: $\frac{n}{2} - \frac{3n}{4} + \frac{5n}{6} = 21$ $\frac{6n - 9n + 10n}{12} = 21$ SURFA $\frac{7n}{12} = 21$ $7n = 21 \times 12$ $n = \frac{21 \times 12}{7} = 36$ 3. $x + 7 - \frac{8x}{3} = \frac{17}{6} - \frac{5x}{2}$ Sol: $x + 7 - \frac{8x}{3} = \frac{17}{6} - \frac{5x}{2}$ LCM of 3,6,2 =6 Multiply with '6' $6 \times x + 6 \times 7 - 6 \times \frac{8x}{3} = 6 \times \frac{17}{6} - 6 \times \frac{5x}{2}$ 6x + 42 - 16x = 17 - 15x42 - 10x = 17 - 15x15x - 10x = 17 - 425x = -25 $x = \frac{-25}{5} = -5$ 4. $\frac{x-5}{3} = \frac{x-3}{5}$ Sol: $\frac{x-5}{3} = \frac{x-3}{5}$ 5(x-5) = 3(x-3)

$$5x - 25 = 3x - 9$$

$$5x - 3x = -9 + 25$$

$$2x = 16$$

$$x = \frac{16}{2} = 8$$

$$5.\frac{3t - 2}{4} - \frac{2t + 3}{3} = \frac{2}{3} - t$$

Sol: $\frac{3t - 2}{4} - \frac{2t + 3}{3} = \frac{2}{3} - t$
LCM of 4,3=12
Multiply with'12'

$$12 \times \frac{3t - 2}{4} - 12 \times \frac{2t + 3}{3} = 12 \times \frac{2}{3} - 12 \times t$$

$$3(3t - 2) - 4(2t + 3) = 4 \times 2 - 12t$$

$$9t - 6 - 8t - 12 = 8 - 12t$$

$$t - 18 = 8 - 12t$$

$$t + 12t = 8 + 18$$

$$13t = 26$$

$$t = \frac{26}{13} = 2$$

6. $m - \frac{m - 1}{2} = 1 - \frac{m - 2}{3}$
Sol: $m - \frac{m - 1}{2} = 1 - \frac{m - 2}{3}$
LCM of 2,3=6
Multiply with '6'

$$6 \times m - 6 \times \left(\frac{m - 1}{2}\right) = 6 \times 1 - 6 \times \left(\frac{m - 2}{3}\right)$$

$$6m - 3(m - 1) = 6 - 2(m - 2)$$

$$6m - 3m + 3 = 6 - 2m + 4$$

$$3m + 3 = 10 - 2m$$

$$3m + 2m = 10 - 3$$

$$5m = 7$$

$$m = \frac{7}{5}$$

Simplify and solve the following linear equations.
7. $3(t - 3) = 5(2t + 1)$

Sol: 3(t - 3) = 5(2t + 1)

$$3t - 9 = 10t + 5$$

$$3t - 10t = 5 + 9$$

$$-7t = 14$$

$$t = \frac{14}{-7} = -2$$

8. 15(y - 4) - 2(y - 9) + 5(y + 6) = 0

$$15y - 60 - 2y + 18 + 5y + 30 = 0$$

$$18y - 12 = 0$$

$$18y = 12$$

$$y = \frac{12}{18} = \frac{2}{3}$$

9. 3(5z - 7) - 2(9z - 11) = 4(8z - 13) - 17
Sol: $3(5z - 7) - 2(9z - 11) = 4(8z - 13) - 17$

$$15z - 21 - 18z + 22 = 32z - 52 - 17$$

$$-3z + 1 = 32z - 69$$

$$32z + 3z = 1 + 69$$

$$35z = 70$$

$$z = \frac{70}{35} = 2$$

10. 0. 25(4f - 3) = 0.05(10f - 9)
Sol: 0.25(4f - 3) = \frac{5}{100}(10f - 9)

$$25(4f - 3) = 100 \times \frac{5}{100}(10f - 9)$$

$$100f - 75 = 50f - 45$$

$$100f - 50f = -45 + 75$$

$$50f = 30$$

$$f = \frac{30}{50} = 0.6$$