CHAPTER

5

VII-MATHEMATICS-NCERT-2023-24

5. Lines and Angles (Notes)

PREPARED BY: BALABHADRA SURESH https://sureshmathsmaterial.com/

- 1. A line segment has two end points.
- 2. If we extend the two end points of a line segment in either direction endlessly, we get a line.
- 3. A line has no end points.
- 4. A ray has one end point (namely its starting point).

- 5. An angle is made up of two rays starting from a common starting/initial point
- 6. Types of angles:

Name	Acute angle	Right	Obtuse angle	Straight angle	Reflex angle	Complete
		angle				angle
Measure	$0^{0} < x < 90^{0}$ $Between$ $0^{0} and 90^{0}$	$y = 90^{0}$	$90^{0} < z < 180^{0}$ Between 90^{0} and 180^{0}	s = 180°	$180^{0} < t < 360^{0}$ Between 180^{0} and 360^{0}	$u = 360^{\circ}$
Illustration				B O A		

7. **Complementary Angles**: The sum of the measures of two angles is 90°, the angles are called complementary angles.

Ex: 50° , 40° ; 25° , 65°

8. The complement of $x^0 = 90^0 - x^0$

THINK, DISCUSS AND WRITE

1. Can two acute angles be complement to each other?

Sol: Yes.

2. Can two obtuse angles be complement to each other?

Sol: No, Sum of two obtuse angles is greater than 90° .

- 3. Can two right angles be complement to each other?
- Sol: No, sum of two right angles is 180° .

TRY THESE

1. Which pairs of following angles are complementary?

Sol: (i) $70^{0}+20^{0}=90^{0}$

 $70^{\circ},20^{\circ}$ are complementary angles.

(ii) $75^{0}+25^{0}=100^{0}$

75°,25° are not complementary angles.

(iii) $48^{0}+52^{0}=100^{0}$

480,520 are not complementary angles.

(iv) $35^0 + 55^0 = 90^0$

350,550 are complementary angles.

2. What is the measure of the complement of each of the following angles?

(i) 45° (ii) 65° (iii) 41° (iv) 54°

- Sol: (i) The complementary angle of $45^{\circ} = 90^{\circ} 45^{\circ} = 45^{\circ}$
 - (ii) The complementary angle of $65^{\circ} = 90^{\circ} 65^{\circ} = 25^{\circ}$
 - (iii) The complementary angle of $41^0 = 90^0 41^0 = 49^0$
 - (iv)The complementary angle of $54^{\circ} = 90^{\circ} 54^{\circ} = 36^{\circ}$

3. The difference in the measures of two complementary angles is 120 . Find the measures of the angles.

Sol: Let the complementary angles are x and $x + 12^0$

Sum of complementary angles $= 90^{\circ}$

$$x + x + 12^0 = 90^0$$

$$2x + 12^0 = 90^0$$

$$2x = 90^{\circ} - 12^{\circ}$$

$$2x = 78^{0}$$

$$\frac{2x}{2} = \frac{78^{\circ}}{2}$$

$$x = 39^{0}$$

$$x + 12^0 = 39^0 + 12^0 = 51^0$$

 \div The complementary angles are 39^{0} and 51^{0}

Supplementary Angles: The sum of the measures of two angles is 180°, the angles are called supplementary angles.

The supplement of $x^0 = 180^0 - x^0$

THINK, DISCUSS AND WRITE

1. Can two obtuse angles be supplementary?

Sol: No, sum of two obtuse angles is greater than 180°.

2. Can two acute angles be supplementary?

Sol: No, sum of two acute angles is less than 180°.

3. Can two right angles be supplementary?

Sol: Yes, sum of two right angles is 180°.

TRY THESE

1. Find the pairs of supplementary angles.

Sol: (i)
$$110^0 + 50^0 = 160^0$$

 110^{0} and 50^{0} are not supplementary angles.

(ii)
$$105^0 + 65^0 = 170^0$$

 105° and 65° are not supplementary angles.

(iii)
$$50^0 + 130^0 = 180^0$$

50° and 130° are supplementary angles.

(iv)
$$45^0 + 45^0 = 90^0$$

45° and 45° are not supplementary angles.

2. What will be the measure of the supplement of each one of the following angles?

The supplement of $x^0 = 180^0 - x^0$

(i) The supplement of
$$100^{0} = 180^{0} - 100^{0} = 80^{0}$$

(ii) The supplement of
$$90^{0} = 180^{0} - 90^{0} = 90^{0}$$

(iii) The supplement of
$$55^0 = 180^0 - 55^0 = 125^0$$

(iv) The supplement of
$$125^0 = 180^0 - 125^0 = 55^0$$

3. Among two supplementary angles the measure of the larger angle is 440 more than the measure of the smaller. Find their measures.

Sol: Let smaller angle =
$$x$$

The larger angle =
$$x + 44^{\circ}$$

Sum of two supplementary angles = 180°

$$x + x + 44^0 = 180^0$$

$$2x + 44^0 = 180^0$$

$$2x = 180^0 - 44^0$$

$$2x = 136^0$$

$$\frac{2x}{2} = \frac{136^0}{2}$$

$$x = 68^{\circ}$$

Hence, smaller angle= 68°

Larger angle= $68^{\circ} + 44^{\circ} = 112^{\circ}$

EXERCISE 5.1

1. Find the complement of each of the following angles:

(i) Complement of
$$20^0 = 90^0 - 20^0 = 70^0$$

(ii) Complement of
$$63^0 = 90^0 - 63^0 = 27^0$$

(iii) Complement of
$$57^0 = 90^0 - 57^0 = 33^0$$

2. Find the supplement of each of the following angles:

- (i) Supplement of $105^0 = 180^0 105^0 = 75^0$
- (ii) Supplement of $87^0 = 180^0 87^0 = 93^0$
- (iii) Supplement of $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$

3. Identify which of the following pairs of angles are complementary and which are supplementary.

- (i) 65° , 115° (ii) 63° , 27° (iii) 112° , 68° (iv) 130° , 50° (v) 45° , 45° (vi) 80° , 10°
- Sol: (i) 650+1150=1800

65°,115° are supplementary angles.

(ii) $63^{\circ}+27^{\circ}=90^{\circ}$

63°,27° are complementary angles.

(iii) $112^{0}+68^{0}=180^{0}$

1120,680 are supplementary angles.

(iv) $130^{0}+50^{0}=180^{0}$

35°,55° are supplementary angles.

(v) $45^{0}+45^{0}=90^{0}$

45°,45° are complementary angles.

(vi) $80^{0}+10^{0}=90^{0}$

80°,10° are complementary angles.

4. Find the angle which is equal to its complement.

Sol: Let the complementary angles are x and x

$$x + x = 90^{0}$$

$$2x = 90^{\circ}$$

$$\frac{2x}{2} = \frac{90^{\circ}}{2}$$

$$x = 45^{\circ}$$

5. Find the angle which is equal to its supplement.

Sol: Let the supplementary angles are x and x

$$x + x = 180^{\circ}$$

$$2x = 180^{\circ}$$

$$\frac{2x}{2} = \frac{180^0}{2}$$

$$x = 90^{0}$$

6. In the given figure,
$$\angle 1$$
 and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the angles still remain supplementary

Sol: $\angle 2$ will increase with the same measure as the decrease in $\angle 1$.

7. Can two angles be supplementary if both of them are:

- (i) acute? No (ii) obtuse? No (iii) right? Yes
- 8. An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Sol: Let the angle=500

Its complementary angle= $90^{0}-50^{0}=40^{0}$ is less than 45^{0}

If an angle is greater than 45° its complementary angle less than 45° .

9. Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is 900.
- (ii) If two angles are supplementary, then the sum of their measures is 180°.
- (iii) If two adjacent angles are supplementary, they form a linear pair.
- 10. In the adjoining figure, name the following pairs of angles.
 - (i) Obtuse vertically opposite angles.

Sol: ∠AOD, ∠BOC

(ii) Adjacent complementary angles.

Sol: ∠EOA, ∠AOB

(iii) Equal supplementary angles.

Sol: ∠EOB, ∠EOD

(iv) Unequal supplementary angles.

Sol: ∠EOA, ∠EOC

(v) Adjacent angles that do not form a linear pair.

Sol: ∠AOB, ∠AOE; ∠AOE, ∠EOD; ∠EOD, ∠COD

Intersecting Lines

- 1. If two lines have one common point, they are called intersecting lines.
- 2. Two lines *l* and *m* intersect if they have a point in common.
- 3. This common point 0 is their point of intersection.

TRY THESE

- 1. Find examples from your surroundings where lines intersect at right angles .
- Sol: (i) Adjacent edges of table.
 - (ii) Adjacent walls of a house.
 - (iii) Edges of black board.
- 2. Find the measures of the angles made by the intersecting lines at the vertices of an equilateral triangle.

Sol: 60⁰

3. Draw any rectangle and find the measures of angles at the four vertices made by the intersecting lines.

Sol: Each angle=90°.

4. If two lines intersect, do they always intersect at right angles?

Sol: No, two intersecting lines do not always intersect at right angles.

Transversal: A line that intersects two or more lines at distinct points is called a transversal.

Angles made by a Transversal:

Interior angles	∠3, ∠4, ∠5, ∠6	
Exterior angles	∠1, ∠2, ∠7, ∠8	1 p
Pairs of Corresponding angles	∠1 and ∠5, ∠2 and ∠6, ∠3	1 2 1
	and ∠7, ∠4 and ∠8	3 4
Pairs of Alternate interior	∠3 and ∠6, ∠4 and ∠5	5 6
angles		7 m
Pairs of interior angles on the	∠3 and ∠5, ∠4 and ∠6	4
same side of the transversal		

TRY THESE

Name the pairs of angles in each figure:

Sol: (i) $\angle 1$ and $\angle 2$ are pair of corresponding angles.

- (ii) $\angle 3$ and $\angle 4$ are pair of alternate interior angles.
- (iii) $\angle 5$ and $\angle 6$ are pair of interior angles on the same side of the transversal (Co-interior angles) (iv) $\angle 7$ and $\angle 8$ are pair of corresponding angles.
- (v) $\angle 9$ and $\angle 10$ are pair of alternate interior angles.
- (vi) $\angle 11$ and $\angle 12$ are pair of exterior angles.

Transversal of Parallel Lines:

If f two parallel lines are cut by a transversal then

 $\label{eq:corresponding} \textbf{(i)} \ \ \textbf{Each pair of corresponding angles are equal in measure.}$

$$\angle 1 = \angle 5; \ \angle 2 = \angle 6; \ \angle 3 = \angle 7; \ \angle 4 = \angle 8$$

(ii) Each pair of alternate interior angles are equal.

$$\angle 3 = \angle 6$$
; $\angle 4 = \angle 5$

 $(iii) \ \ Each \ pair \ of \ interior \ angles \ on \ the \ same \ side \ of \ the \ transversal \ are \ supplementary.$

$$\angle 3 + \angle 5 = 180^{\circ}; \ \angle 4 + \angle 6 = 180^{\circ}$$

(iv) each pair of exterior angles on the same side of the transversal are supplementary

$$\angle 1 + \angle 7 = 180^{\circ}; \ \angle 2 + \angle 8 = 180^{\circ}$$

TRY THESE

(i) Lines $l \parallel m$; t is a transversal $\angle x=$?

Sol: $\angle x = 60^{\circ}$ (Corresponding angles are equal)

Sol:
$$\angle y = 55^{\circ}$$
 (Alternate interior angles)

(iii) l_1 , l_2 be two lines t is a transversal Is $\angle 1 = \angle 2$?

Sol:
$$l_1 \nmid l_2$$
, so $\angle 1 \neq \angle 2$

(iv) Lines
$$l \parallel m$$
; t is a transversal $\angle z = ?$

Sol: Interior angles on the same side of the transversal are supplementary

$$z + 60^{0} = 180^{0}$$

 $z = 180^{0} - 60^{0} = 120^{0}$

(v) Lines
$$l \parallel m$$
; t is a transversal $\angle x = ?$

Sol:
$$\angle x = 120^{\circ}$$
 (Corresponding angles)

$$(vi)$$
Lines $l \parallel m, p \parallel q$; Find a, b, c, d

Sol: $a + 60^0 = 180^0$ ($p \parallel q$, Interior angles on the same side are supplementary)

$$a = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

$$b = 60^{\circ} (l \parallel m; alternate interior angles)$$

$$c = b = 60^{\circ}$$
 (Vertically opposite angles)

$$d + b = 180^0$$
 (Linear pair)

$$d + 60^0 = 180^0$$

$$d = 180^{0} - 60^{0} = 120^{0}$$

CHECKING FOR PARALLEL LINES

- (i) When a transversal cuts two lines, such that pairs of corresponding angles are equal, then the lines have to be parallel.
- (ii) When a transversal cuts two lines, such that pairs of alternate interior angles are equal, the lines have to be parallel.
- (iii) When a transversal cuts two lines, such that pairs of interior angles on the same side of the transversal are supplementary, the lines have to be parallel.

- (i) Alternate interior angles are equal. So, $l \parallel m$.
- (ii) Corresponding angles are equal. So, , $l \parallel m$
- (iii) If, $l \parallel m$ then

 $x + 70^{\circ} = 180^{\circ}$ (Interior angles on the same side of the transversal are supplementary

$$x = 180^{0} - 70^{0} = 110^{0}$$

EXERCISE 5.2

- 1. State the property that is used in each of the following statements?
- (i) If $a \parallel b$, then $\angle 1 = \angle 5$.

Sol: Corresponding angle property

(ii) If
$$\angle 4 = \angle 6$$
, then $a \parallel b$.

Sol: Alternate interior angle property.

(iii) If
$$\angle 4 + \angle 5 = 180^{\circ}$$
, then $a \parallel b$.

Sol: Interior angles on the same side of the transversal are supplementary.

(i) the pairs of corresponding angles.

Sol:
$$\angle 1, \angle 5; \quad \angle 2, \angle 6; \quad \angle 3, \angle 7; \quad \angle 4, \angle 8.$$

(ii) the pairs of alternate interior angles.

Sol:
$$\angle 2$$
, $\angle 5$; $\angle 3$, $\angle 8$.

(iv) the vertically opposite angles.

Sol:
$$\angle 1$$
, $\angle 3$; $\angle 2$, $\angle 4$; $\angle 5$, $\angle 7$; $\angle 6$, $\angle 8$.

Sol: $d = 125^0$ (Corresponding angles)

$$b = d = 125^{\circ}$$
 (Vertically opposite angles)

$$e + 125^0 = 180^0$$
 (Linear pair)

$$e = 180^{0} - 125^{0} = 55^{0}$$

 $f = e = 55^{\circ}$ (Vertically opposite angles)

 $c = f = 55^{\circ}$ (Corresponding angles)

 $a = c = 55^{\circ}$ (Vertically opposite angles)

$$a = 55^{\circ}$$
; $b = 125^{\circ}$; $c = 55^{\circ}$; $d = 125^{\circ}$; $e = 55^{\circ}$; $f = 55^{\circ}$.

- **4.** Find the value of x in each of the following figures if $l \parallel m$.
 - (i) $y = 110^{0}$ (Corresponding angles)

$$x + y = 180^{\circ}$$
 (Linear pair)

$$x + 110^0 = 180^0$$

$$x = 180^0 - 110^0$$

$$x = 70^{0}$$

(ii) $x = 100^{\circ}$ (Corresponding angles)

- 5. In the given figure, the arms of two angles are parallel. If $\angle ABC = 70^{\circ}$, then find (i) $\angle DGC$ (ii) $\angle DEF$
- Sol: (i) ∠DGC=∠ABC (Corresponding angles property)

(ii) ∠DEF =∠DGC (Corresponding angles property)

6. In the given figures below, decide whether l is parallel to m

(i)
$$44^0 + 126^0 = 170^0$$

Interior angles on the same side of the transversal are not supplementary. So, $l \nmid m$

(ii)
$$x + 75^0 = 180^0$$
 (Linear pair)

$$x = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

Corresponding angles 75° and 105° are not equal. So, $l \nmid m$.

(iii)
$$y + 123^0 = 180^0$$
 (Linear pair)

$$y = 180^{\circ} - 123^{\circ} = 57^{\circ}$$

Corresponding angles are equal (57°). So, $l \parallel m$.

(iv)
$$x + 72^0 = 180^0$$
 (Linear pair)

$$x = 180^{\circ} - 72^{\circ} = 108^{\circ}$$

Alternate interior angles 98° and 108° are not equal. So, $l \nmid m$