CHAPTER

4

VI-MATHEMATICS-NCERT

4 BASIC GEOMETRICAL IDEAS(Notes)

PREPARED BY: BALABHADRA SURESH

https://sureshmathsmaterial.com/

- 1. The term 'Geometry' is the English equivalent of the Greek word 'Geometron'. 'Geo' means Earth and 'metron' means Measurement
- 2. **Point**: A point determines a location. It is usually denoted by a capital letter A, B, C, ...

Try These Q

With a sharp tip of the pencil, mark four points on a paper and name them by the letters A,C,P,H.
Try to name these points in different ways. One such way could be this.

A• •C

Sol

P• •H

- 2. A star in the sky also gives us an idea of a point. Identify at least five such situations in your daily life.
- Sol: (i) The tip of a pencil.
 - (ii) The tip of a pen
 - (iii) The pointed end of the tooth pic
 - (iv) The sharp tip of compass.
 - (v) A small bindi.
- **A Line Segment:** This shortest join of point A to B (including A and B) is a line segment. It is denoted by \overline{AB} or \overline{BA}

The points A and B are called the end points of the segment.

3. Name the line segments in the figure 4.2. Is A, the end point of each line segment?

Sol: \overline{AB} and \overline{AC}

 \boldsymbol{A} \boldsymbol{Line} : Aline segment extended both directions without any end point we get a line .

The line AB written as \overrightarrow{AB}

Sometimes a line is denoted by a letter like l, m, n ...

Intersecting Lines: Two distinct lines meeting at a point are called intersecting lines.

If two lines have one common point, they are called intersecting lines.

Parallel Lines: If two lines have no common points, they are called parallel

....

lines.

Two lines in a plane are said to be parallel if they do not meet.

Ray: A ray is a portion of a line. It starts at one point (called starting point or initial point) and goes endlessly in a direction.

Ray AP is denote by \overrightarrow{AP}

Try These Q

1. Name the rays given in this picture (Fig 4.8)

Sol: \overrightarrow{TA} , \overrightarrow{TN} or \overrightarrow{TB}

- 4. Is T a starting point of each of these rays?
- Sol: T starting point of the rays \overrightarrow{TA} , \overrightarrow{TN} or \overrightarrow{TB} But not \overrightarrow{NB}

EXERCISE 4.1

1. Use the figure to name:

(a) Five points: B,C,D,E,O

(b) A line: \overrightarrow{BD} or

(c) Four rays : \overrightarrow{OC} , \overrightarrow{OB} , \overrightarrow{DB} , \overrightarrow{EB}

(d) Five line segments: \overline{OB} , \overline{OC} , \overline{DE} , \overline{EO} , \overline{DB}

Sol: \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{BD} , \overrightarrow{CA} , \overrightarrow{CB} , \overrightarrow{CD} , \overrightarrow{DA} , \overrightarrow{DB} , \overrightarrow{DC} .

2. Use the figure to name:

(a) Line containing point \mathbf{E} : \overrightarrow{AE} or \overrightarrow{BE} or \overrightarrow{DE} or \overrightarrow{EF}

(b) Line passing through A: \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{BD} , \overrightarrow{AE} , \overrightarrow{DE}

- (c) Line on which O lies: \overrightarrow{OC} , \overrightarrow{OD} , \overrightarrow{CD}
- (d) Two pairs of intersecting lines: \overrightarrow{OC} , \overrightarrow{AE} ; \overrightarrow{OF} , \overrightarrow{AE}
- 6. How many lines can pass through (a) one given point? (b) two given points?

Sol: (a) Infinite lines (b) One line.

- 3. Draw a rough figure and label suitably in each of the following cases:
 - (a) Point P lies on AB.

(b) \overrightarrow{XY} and \overrightarrow{PQ} intersect at M.

(c) Line I contains E and F but not D.

(d) \overrightarrow{OP} and \overrightarrow{OQ} meet at 0.

- 7. Consider the following figure of line MN . Say whether following statements are true or false in context of the given figure.
 - (a) Q, M, O, N, P are points on the line \overrightarrow{MN} . (True)
 - (b) M, O, N are points on a line segment \overline{MN} . (True)
 - (c) M and N are end points of line segment \overline{MN} . (True)
 - (d) O and N are end points of line segment \overline{OP} . (False)
 - (e) M is one of the end points of line segment \overline{QO} . (False)
 - (f) M is point on ray \overrightarrow{OP} . (False)

- (j) 0 is not an initial point of $\overrightarrow{\textit{OP}}$. (False)
- (k) N is the initial point of $\overrightarrow{\textit{NP}}\ \ \text{and}\ \overrightarrow{\textit{NM}}\ \ .$ (True)

Curves

Any drawing (straight or non-straight) done without lifting the pencil may be called **a curve**. In this sense, **a line is also a curve**.

- (i) If a curve does not cross itself, then it is called a simple curve.
- (ii) A simple curve is one that does not cross itself.
- (iii) A curve is said to be closed if its ends are joined; otherwise it is said to be open
- (iv) The interior of a curve together with its boundary is called its "region".

Polygons

A polygon is a simple closed curve made up of line segments.

(i) The line segments forming a polygon are called its sides.

 \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , \overline{EA}

(ii) Any two sides with a common end point are called the adjacent sides.

 \overline{AB} , \overline{BC} ; \overline{BC} , \overline{CD} ; \overline{CD} , \overline{DE} ; \overline{DE} , \overline{EA} ; \overline{EA} , \overline{AB} .

(iii) The meeting point of a pair of sides is called a vertex.

A, B, C, D, E.

(iv) The end points of the same side are adjacent vertices.

 $A,\,B;\ B,\,C;\ C,\,D;\ D,\,E;\ E,\,A\;.$

(v) The join of any two non-adjacent vertices is a diagonal.

 \overline{AC} , \overline{AD} , \overline{BD} , \overline{BE}

EXERCISE 4.2

1. Classify the following curves as (i) Open or (ii) Closed.

(c)

Sol: (a), (c) are Open curves.

(b),(d) and (e) are closed curves.

- 8. Draw rough diagrams to illustrate the following:
- 9. (a) Open curve (b) Closed curve.

Sol:

Open curve

Closed curve

10. Draw any polygon and shade its interior.

Sol:

- 11. Consider the given figure and answer the questions:
 - (a) Is it a curve? (b) Is it closed?

Sol: (a) Yes, it is a curve. (b) Yes, it is closed.

- 12. Illustrate, if possible, each one of the following with a rough diagram:
 - (a) A closed curve that is not a polygon.

Closed curve

- (b) An open curve made up entirely of line segments.
- (c) A polygon with two sides.

Sol: Not possible.

Angles

1. An angle is made up of two rays starting from a common starting/initial point.

2. The two rays forming the angle are called the arms or sides of the angle.

4. Two rays \overrightarrow{OP} and \overrightarrow{OQ} make $\angle POQ$ (or also called $\angle QOP$). O is vertex.

5. An angle leads to three divisions of a region: On the angle, the interior of the angle and the exterior of the angle.

EXERCISE 4.3

13. Name the angles in the given figure

Sol: ∠ABC, ∠BCD, ∠CDA, ∠DAB

- 14. In the given diagram, name the point(s)
 - (a) In the interior of ∠DOE

Sol: A

(b) In the exterior of $\angle EOF$

Sol: A,D,C

(c) On ∠EOF

Sol: E,B,O,F

1. Draw rough diagrams of two angles such that they have.

(a) One point in common.

∠AOB and ∠COD have one common point O

(b) Two points in common.

∠AOB and ∠COD have two common points O, B

(c) Three points in common.

 \angle AOB and \angle COD have three common points O, B, D

(d) Four points in common.

∠AOB and ∠COD have four common points O, B, D, E

(e) One ray in common.

 \angle AOB and \angle COD have one ray \overrightarrow{OB} in common.

https://sureshmathsmaterial.com/