CHAPTER

5

VI-MATHEMATICS-NCERT-2024-25

6 UNDERSTANDING ELEMENTARY SHAPES (NOTES)

REPARED BY: BALABHADRA SURESH

https://sureshmathsmaterial.com/

- 1. All the shapes we see around us are formed using curves or lines.
- 2. The ruler is marked along one of its edges. It is divided into 15 parts. Each of these 15 parts is of length 1cm.
- 3. Millimetre= mm; Centimetre=cm.
- 4. 10 mm = 1 cm.
- 5. 1mm=0.1 cm.
- 6. 2.3 cm = 2 cm and 3 mm.
- 7. length of \overline{AB} =5.8 cm then we write AB=5.8 cm

EXERCISE 5.1

1. What is the disadvantage in comparing line segments by mere observation?

Sol: The disadvantage of comparing the lengths of two line segments by mere observation is that the lengths might not be accurate. Hence, a divider is used to compare the lengths of the line segments

2. Why is it better to use a divider than a ruler, while measuring the length of a line segment?

Sol: The thickness of the ruler may cause difficulties in reading off the marks on it. Errors can happen due to angular viewing. So, it is better to use a divider than a ruler, while measuring the length of a line segment.

3. Draw any line segment, say AB. Take any point C lying in between A and B. Measure the lengths of AB, BC and AC. Is AB = AC + CB?

Sol: Yes, AB = AC + CB

4. If A,B,C are three points on a line such that AB = 5 cm, BC = 3 cm and AC = 8 cm, which one of them lies between the other two?

Sol: B lie between A and C.

5. Verify, whether D is the mid-point of AG

Sol: AD = DG = 3 units . So, D is the mid-point of AG.

6. If B is the mid point of \overline{AC} and C is the mid point of \overline{BD} , where A,B,C,D lie on a straight line, say why AB = CD?

Sol: If B is the mid-point of \overline{AC} then AB=BC \rightarrow (1)

If C is the mid-point of \overline{BD} then BC=CD \rightarrow (2)

From (1) and (2) : AB=CD.

7. Draw five triangles and measure their sides. Check in each case, if the sum of the lengths of any two sides is always less than the third side.

Sol: The sum of the lengths of any two sides of a triangle can never be less than the length of the third side.

These Q

1. What is the angle name for half a revolution?

Sol: straight angle.

2. What is the angle name one-fourth revolution?

Sol: Right angle.

3. Draw five other situations of one-fourth, half and three-fourth revolution on a clock

Sol:

One-fourth revolution

Half revolution

One-fourth revolution

Three-fourth revolution

Half revolution

Three-fourth revolution

EXERCISE 5.2

- 1. What fraction of a clockwise revolution does the hour hand of a clock turn through, when it goes from.
 - (a) 3 to 9 (A) $\frac{1}{2}$
- (c)7 to 10 (A) $\frac{1}{4}$ (d) 12 to 9 (A) $\frac{3}{4}$
- (e) 1 to 10 (A) $\frac{3}{4}$

(b)4 to 7 (A) $\frac{1}{4}$

(f) 6 to 3 (A) $\frac{3}{4}$

North

- 2. Where will the hand of a clock stop if it
 - (a) starts at 12 and makes $\frac{1}{2}$ of a revolution, clockwise?

Sol: 6

(b) starts at 2 and makes $\frac{1}{2}$ of a revolution, clockwise? Sol:8

(c) starts at 5 and makes $\frac{1}{4}$ of a revolution, clockwise?

Sol:8

(d) starts at 5 and makes $\frac{3}{4}$ of a revolution, clockwise?

Sol: 2

- 3. Which direction will you face if you start facing
 - (a) east and make $\frac{1}{2}$ of a revolution clockwise?

Sol: West.

(b) east and make $1\frac{1}{2}$ of a revolution clockwise?

Sol: West.

(c)west and make $\frac{3}{4}$ of a revolution anti – clockwise?

Sol: North.

(d) south and make one full revolution?

Sol: South.

- 4. What part of a revolution have you turned through if you stand facing.
 - (a) east and turn clockwise to face north?

Sol: $\frac{3}{4}$

(b) south and turn clockwise to face east?

Sol: $\frac{3}{4}$

(c) west and turn clockwise to face east?

Sol: $\frac{1}{2}$

5. Find the number of right angles turned through by the hour hand of a clock when it goes from

(a)3 to 6

- (A) 1 right angle.
- (b)2 to 8
- (A) 2 right angles.
- (c)5 to 11
- (A) 2 right angles.
- (d)10 to 1
- (A) 1 right angle.
- (e) 12 to 9
- (A) 3 right angles.
- (f)12 to 6
- (A) 2 right angles.
- 6. How many right angles do you make if you start facing
 - (a) south and turn clockwise to west?

Sol: 1 right angle.

(b) north and turn anti-clockwise to east?

Sol: 3 right angles.

(c) west and turn to west?

Sol: 4 right angles.

(d) south and turn to north?

Sol: 2 right angles.

7. Where will the hour hand of a clock stop if it starts.

(a) from 6 and turns through 1 right angle?

Sol: 9

(b) from 8 and turns through 2 right angles?

Sol: 2

(c) from 10 and turns through 3 right angles?

Sol: 7

(d) from 7 and turns through 2 straight angles?

Sol: 7

Angles - 'Acute', 'Obtuse' and 'Reflex

- 1. An angle smaller than a right angle is called an acute angle.
- 2. If an angle is larger than a right angle, but less than a straight angle, it is called an obtuse angle.
- 3. A reflex angle is larger than a straight angle.

EXERCISE 5.3

1. Match the following:

- (i) Straight angle
- (ii) Right angle
- (iii) Acute angle
- (iv) Obtuse angle
- (v) Reflex angle

- (a) Less than one-fourth of a revolution
- (b) More than half a revolution
- (c) Half of a revolution
- (d) One-fourth of a revolution
- (e) Between $\frac{1}{4}$ and $\frac{1}{2}$ of a revolution
- (f) One complete revolution

Sol: (i)
$$\rightarrow$$
(c); (ii) \rightarrow (d); (iii) \rightarrow (a); (iv) \rightarrow (e); (v) \rightarrow (b)

2. Classify each one of the following angles as right, straight, acute, obtuse or reflex:

Sol: (a) \rightarrow Acute angle; (b) \rightarrow Obtuse angle; (c) \rightarrow Right angle; (d) \rightarrow Reflex angle;

(e) \rightarrow Straight angle; (f) \rightarrow Acute angle.

The measure of angle

One complete revolution is divided into 360 equal parts. Each part is a degree. We write 360° to say 'three hundred sixty degrees'.

- 1. Right angle=90°
- 2. Straight angle=1800
- 3. We use Protractor to measure angles

EXERCISE 5.4

1. What is the measure of (i) a right angle? (ii) a straight angle?

Sol: (i) 90° (ii) 180°.

- 2. Say True or False:
 - (a) The measure of an acute angle < 90°.(True)
 - (b) The measure of an obtuse angle < 90°. (False)
- (c) The measure of a reflex angle > 180°. (True)
- (d) The measure of one complete revolution = 360°. (True)
- (e) If m $\angle A = 53^{\circ}$ and m $\angle B = 35^{\circ}$, then m $\angle A > m \angle B$ (True)
- 3. Write down the measures of
 - (a) Some acute angles.

Sol:40⁰, 60⁰,89⁰

4. Measure the angles given below using the Protractor and write down the measure.

Sol: (a) 45° ; (b) 120° ; (c) 90° ; (d) $\angle 1 = 60^{\circ}$, $\angle 2 = 90^{\circ}$, $\angle 3 = 125^{\circ}$

5. Which angle has a large measure? First estimate and then measure.

Measure of Angle $A = 40^{\circ}$ Measure of Angle $B = 50^{\circ}$

6. From these two angles which has larger measure? Estimate and then confirm by measuring them.

Sol: (i) 45°; (ii) 60°

- (a) An angle whose measure is less than that of a right angle is **acute**.
- (b) An angle whose measure is greater than that of a right angle is **obtuse**.
- (c) An angle whose measure is the sum of the measures of two right angles is straight.
- (d) When the sum of the measures of two angles is that of a right angle, then each one of them is acute.

30°

- (e) When the sum of the measures of two angles is that of a straight angle and if one of them is acute then the other should be an obtuse angle..
- 8. Find the measure of the angle shown in each figure. (First estimate with your eyes and then find the actual measure with a protractor).

Find the angle measure between the hands of the clock in each figure:

9.00 a.m.

1.00 p.m.

6.00 p.m.

Sol: (i) 90°; (ii) 30°; (iii) 180°.

- 10. In the given figure, the angle measures 30°. Look at the same figure through a magnifying glass. Does the angle becomes larger? Does the size of the angle change?
- Sol: The measure of angle does not change

11. Measure and classify each angle:

Measure	Type
40°	Acute angle
125 ⁰	Obtuse angle
85°	Acute angle
95°	Obtuse angle
140°	Obtuse angle
180°	Straight angle
	40° 125° 85° 95° 140°

Perpendicular Lines

- 1. When two lines intersect and the angle between them is a right angle, then the lines are said to be perpendicular
- 2. If a line AB is perpendicular to CD, we write AB \perp CD .
- 3. If AB \perp CD, then CD \perp AB also.
- 4. $\overrightarrow{MN} \perp \overline{AB}$ and MN divide AB into two equal parts. we say MN is the perpendicular bisector of \overline{AB}

EXERCISE 5.5

- 1. Which of the following are models for perpendicular lines:
 - (a) The adjacent edges of a table top.
 - (b) The lines of a railway track.
 - (c) The line segments forming the letter 'L'.
 - (d) The letter V.
- Sol: (a) and (c) are models for perpendicular lines
- 2. Let \overline{PQ} be the perpendicular to the line segment \overline{XY} . Let \overline{PQ} and XY intersect in the point A. What is the measure of $\angle PAY$?

Sol: $\angle PAY = 90^{\circ}$.

3. There are two set-squares in your box. What are the measures of the angles that are formed at their corners? Do they have any angle measure that is common?

Sol: (i) 30°, 60°, 90°.

(ii) 45°, 45°, 90°

- 4. Study the diagram. The line $\it I$ is perpendicular to line $\it m$
- (a) Is CE = EG?
- Sol: Yes, CE = EG.
- (b) Does PE bisect CG?
- Sol: Yes, CE=EG=2 units
- (c) Identify any two line segments for which the perpendicular bisector.

- (d) Are these true?
- (i) AC > FG
- Sol: AC = 2 unit, FG=1 unit. Hence, AC > FG is true.
- (ii) CD = GH
- Sol: CD =1 unit, GH=1 unit. Hence CD = GH is true.
- (iii) BC < EH
- Sol: BC =1 unit, EH=3 units. Hence BC < EH is true.

Classification of Triangles

PE is

Naming triangles based on sides.

- (i) A triangle having all three unequal sides is called a Scalene Triangle.
- (ii) A triangle having two equal sides is called an Isosceles Triangle.
- (iii) A triangle having three equal sides is called an Equilateral Triangle

Naming triangles based on angles

- (i) If each angle is less than 90°, then the triangle is called an acute angled triangle
- (ii) If anyone angle is a right angle then the triangle is called a **right angled triangle**.
- (iii) If anyone angle is greater than 90°, then the triangle is called an obtuse angled triangle.

Try to draw rough sketches of

(a) a scalene acute angled triangle.

(b) an obtuse angled isosceles triangle.

(c) a right angled isosceles triangle.

(d) a scalene right angled triangle.

Do you think it is possible to sketch Think, discuss and write your conclusions.

(a) an obtuse angled equilateral triangle?

Sol: Not possible.

(b) a right angled equilateral triangle?

Sol: Not possible

(c) a triangle with two right angles?

Sol: Not possible

EXERCISE 5.6

1. Name the types of following triangles:

(a) Triangle with lengths of sides 7 cm, 8 cm and 9 cm.

Sol: Scalene triangle.

(b) \triangle ABC with AB = 8.7 cm, AC = 7 cm and BC = 6 cm.

Sol: Scalene triangle.

(c) $\triangle PQR$ such that PQ = QR = PR = 5 cm.

Sol: Equilateral triangle.

(d) $\triangle DEF$ with $m \angle D = 90^{\circ}$

Sol: Right angled triangle.

(e) $\triangle XYZ$ with m $\angle Y = 90^{\circ}$ and XY = YZ.

Sol: Isosceles right triangle.

(f) Δ LMN with m \angle L = 30°, m \angle M = 70° and m \angle N = 80°

Sol: Acute-angled triangle.

2. Match the following:

Measures of Triangle

(i) 3 sides of equal length

(ii) 2 sides of equal length

(iii) All sides are of different length

(iv) 3 acute angles

(v) 1 right angle

(vi) 1 obtuse angle

Type of Triangle

(e) Equilateral

(g) Isosceles

(a) Scalene

(f) Acute angled

(d) Right angled

(c) Obtuse angled

(vii) 1 right angle with two sides of equal length

(b) Isosceles right triangled

3. Name each of the following triangles in two different ways: (you may judge the nature of the angle by observation)

Sol: (a) Acute-angled and isosceles. (b) Right-angled and scalene. (c) Obtuse-angled and isosceles.

(d) Right-angled and isosceles triangle. (e) Equilateral and acute angled. (f) Obtuse-angled and Scalene.

4. Try to construct triangles using match sticks. Some are shown here. Can you make a triangle with given and name the type of triangle in each case. If you cannot make a triangle, think of reasons for it.

- (a) 3 matchsticks?
- Sol: Equilateral triangle.
- (b) 4 matchsticks?
- Sol: Not possible.
- (c) 5 matchsticks?
- Sol: Isosceles triangle.
- (d) 6 matchsticks?
- Sol: Equilateral triangle.

Quadrilaterals

A quadrilateral is a polygon which has four sides.

- (i) The sides of the quadrilateral are AB, BC, CD, DA.
- (ii) The 4 angles of quadrilateral are $\angle BAD$, $\angle ADC$, $\angle DCB$ and $\angle ABC$.
- (iii) The diagonals are AC and BD.
- 1. Using four unequal sticks, as you did in the above activity, see if you can form a quadrilateral such that
- (a) all the four angles are acute.
- Sol: Not possible.
- (b) one of the angles is obtuse.
- Sol: Yes.
- (c) one of the angles is right angled.
- Sol: Yes.
- (d) two of the angles are obtuse.

Sol: Yes.

(e) two of the angles are right angled.

Sol: Yes.

(f) the diagonals are perpendicular to one another.

Sol: Not possible.

Types of Quadrilaterals:

Quadrilateral	Figure	Properties
Trapezium		1. One pair of parallel lines
A quadrilateral with a pair	*	
of parallel sides.	\longrightarrow	
Parallelogram:	/	1. Opposite sides are equal.
A quadrilateral with each	<i>f f</i>	2. Opposite angles are equal.
pair of opposite sides		3. Diagonals not equal and bisect one
parallel	"	another.
		4. Adjacent angles are supplementary
Rhombus: A parallelogram		1. All sides are equal.
with sides of equal length.		2. Opposite angles are equal
		3. Diagonals are not equal and
	XX	perpendicularly bisect one another.
		4. Adjacent angles are supplementary
Rectangle: A parallelogram		1. Opposite sides are equal
with a right angle		2. All angles are equal (right
		angle=90°).
81	"	3. Diagonals are equal and bisect one
		another.
Square: A rectangle with	P + 9	1. All sides are equal.
sides of equal length.	1	2. Each of the angles is a right angle.
		3. Diagonals are equal and
		perpendicularly bisect one another.
Kite: A quadrilateral with		1. The diagonals are perpendicular to
exactly two pairs of equal		one another.
consecutive sides	* /	2. One of the diagonals bisects the other.

Quadrilateral	Opposite	e sides	All sides	Opposite Angles	Diag	gonals
	Parallel	Equal	Equal	Equal	Equal	Perpen- dicular
Parallelogram	Yes	Yes	No	Yes	No	No
Rectangle	Yes	Yes	No	Yes	Yes	No
Square	Yes	Yes	Yes	Yes	Yes	Yes
Rhombus	Yes	Yes	Yes	Yes	No	Yes
Trapezium	No	No	No	No	No	No

EXERCISE 5.7

- 1. Say True or False:
 - (a) Each angle of a rectangle is a right angle.
 - Sol: True.
 - (b) The opposite sides of a rectangle are equal in length.
 - Sol: True.
 - (c) The diagonals of a square are perpendicular to one another.
 - Sol: False.
 - (d) All the sides of a rhombus are of equal length.
 - Sol: True.
 - (e) All the sides of a parallelogram are of equal length.
 - Sol: False.
 - (f) The opposite sides of a trapezium are parallel.
 - Sol: False
- 2. Give reasons for the following:
 - (a) A square can be thought of as a special rectangle.
 - Sol: A rectangle with all sides equal becomes a square.
 - (b) A rectangle can be thought of as a special parallelogram.
 - Sol: A parallelogram with each angle a right angle becomes a rectangle.
 - (c) A square can be thought of as a special rhombus.
 - Sol: A rhombus with each angle a right angle becomes a square.
 - (d) Squares, rectangles, parallelograms are all quadrilaterals.
 - Sol: All these are four-sided polygons made of line segments.
 - (e) Square is also a parallelogram.
 - Sol: The opposite sides of a square are parallel, so it is a parallelogram.
- 3. A figure is said to be regular if its sides are equal in length and angles are equal in measure. Can you identify the regular quadrilateral?
- Sol: A square is a 'regular' quadrilateral

Polygons

Number of sides	Name	Illustration
3	Triangle	
4	Quadrilateral	
5	Pentagon	
6	Hexagon	
8	Octagon	

EXERCISE 5.8

1. Examine whether the following are polygons. If anyone among them is not, say why?

Sol: (a) is not a closed figure and hence is not a polygon.

- (b) is a polygon of six sides.
- (c) and (d) are not polygons since they are not made of line segments
- 2. Name each polygon and Make two more examples of each of these.

Sol: (a) A Quadrilateral (b) A Triangle (c) A Pentagon (5-sided) (d) An Octagon (8-sided)

3. Draw a rough sketch of a regular hexagon. Connecting any three of its vertices, draw a triangle. Identify the type of the triangle you have drawn.

Sol: An isosceles triangle can be drawn.

4. Draw a rough sketch of a regular octagon. (Use squared paper if you wish). Draw a rectangle by joining exactly four of the vertices of the octagon.

Sol:

5. A diagonal is a line segment that joins any two vertices of the polygon and is not a side of the polygon. Draw a rough sketch of a pentagon and draw its diagonals.

Sol:

Please download VI to X class all maths notes from website

https://sureshmathsmaterial.com/

