CHAPTER

4

IX-MATHEMATICS-NCERT 4. LINEAR EQUATIONS IN TWO VARIABLES (Notes)

PREPARED BY: BALABHADRA SURESH

https://sureshmathsmaterial.com/

- 1. If a linear equation has two variables then it is called a linear equation in two variables.
- 2. The general form of linear equation in two variables x, y is ax + by + c = 0. Where a, b, c are real numbers, and a, b are not both zero.
- 3. The process of finding solution(s) is called solving an equation.
- 4. A linear equation in two variables has infinitely many solutions. Every solution of the linear equation can be represented by a unique point on the graph of the equation.
- 5. The graphs of x = a and y = a are lines parallel to the y-axis and x-axis, respectively

Example 1: Write each of the following equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case:

(i)
$$2x + 3y = 4.37$$

Sol:
$$2x + 3y = 4.37 \Rightarrow 2x + 3y - 4.37 = 0$$

 $a = 2, b = 3, c = -4.37$

$$(ii) x-4=\sqrt{3}y$$

Sol:
$$x - 4 = \sqrt{3}y \Rightarrow x - \sqrt{3}y - 4 = 0$$

 $a = 1, b = -\sqrt{3}, c = -4$

$$(iii) 4 = 5x - 3y$$

Sol:
$$5x - 3y - 4 = 0$$

 $a = 5, b = -3, c = -4$

$$(iv)$$
 $2x = y$

Sol:
$$2x - y = 0$$

 $a = 2, b = -1, c = 0$

Example 2: Write each of the following as an equation in two variables:

(i)
$$x = -5$$

$$Sol: 1.x + 0.y + 5 = 0$$

(ii)
$$y = 2$$

Sol:
$$0.x + 1.y - 2 = 0$$

(iii)
$$2x = 3$$

Sol:
$$2.x + 0.y - 3 = 0$$

(iv)
$$5y = 2$$

Sol:
$$0.x + 5.y - 2 = 0$$

EXERCISE 4.1

- 1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
- Sol: Let the cost of a notebook = \mathbb{Z} x and cost of a pen = \mathbb{Z} y

The cost of a notebook = $2 \times$ the cost of a pen

$$x = 2y$$

$$x - 2y = 0$$

2. Express the following linear equations in the form ax + by + c = 0 and indicate the values of a, b and c in each case

(i)
$$2x + 3y = 9.3\overline{5}$$

Sol:
$$2x + 3y - 9.3\overline{5} = 0$$

$$a = 2, b = 3, c = -9.3\overline{5}$$

(ii)
$$x - 5y - 10 = 0$$

Sol:
$$1.x - 5.y - 10 = 0$$

$$a = 1$$
 , $b = -5$, $c = -10$

$$(iii) -2x + 3y = 6$$

$$Sol: -2.x + 3.y - 6 = 0$$

$$a = -2$$
 , $b = 3$, $c = 6$

$$(iv) x = 3v$$

Sol:
$$x - 3y = 0$$

$$a = 1$$
 , $b = -3$, $c = 0$

$$(v) 2x = -5y$$

$$Sol: 2x + 5y + 0 = 0$$

$$a = 2, b = 5, c = 0$$

$$(vi) 3x + 2 = 0$$

Sol:
$$3x + 0.y + 2 = 0$$

$$a = 3$$
, $b = 0$, $c = 2$

$$(vii) y - 2 = 0$$

Sol:
$$0.x + 1.y - 2 = 0$$

$$a = 0, b = 1, c = -2$$

$$(viii)$$
 5 = $2x$

Sol:
$$2x + 0.y - 5 = 0$$

$$a = 2 , b = 0 , c = -5$$

Solution of a Linear Equation

- (i) Any pair of values of 'x' and 'y' which satisfy the linear equation in two variables ax + by + c = 0 is called its solution.
- (ii) A linear equation in two variables has infinitely many solutions.

Example 3: Find four different solutions of the equation x + 2y = 6.

Sol: Given equation x + 2y = 6.

(i) Let
$$x = 0 \implies 0 + 2y = 6$$

$$\Rightarrow 2y = 6$$

$$\Rightarrow y = \frac{6}{2} = 3$$

Solution: (0,3)

(ii) Let
$$x = 2 \implies 2 + 2y = 6$$

$$\Rightarrow 2y = 6 - 2$$

$$\Rightarrow 2y = 4$$

$$\Rightarrow y = \frac{4}{2} = 2$$

Solution: (2,2)

(iii) Let
$$x = 4 \Rightarrow 4 + 2y = 6$$

$$\Rightarrow 2y = 6 - 4$$

$$\Rightarrow 2y = 2$$

$$\Rightarrow y = \frac{2}{2} = 1$$

Solution: (4,1)

(vi) Let
$$x = 6 \Rightarrow 6 + 2y = 6$$

$$\Rightarrow 2y = 6 - 6$$

$$\Rightarrow 2y = 0$$

$$\Rightarrow y = \frac{0}{2} = 0$$

Solution: (6,0)

Hence, four different solutions for equation are (0,3); (2,2); (4,1); (6,0)

Example 4: Find two solutions for each of the following equations:

(i)
$$4x + 3y = 12$$

Sol: Let
$$x = o \Rightarrow 4 \times 0 + 3y = 12$$

$$\Rightarrow 3y = 12$$

$$\Rightarrow y = \frac{12}{3} = 4$$

Solution: (0,4)

Let
$$y = 0 \Rightarrow 4x + 3 \times 0 = 12$$

$$\Rightarrow 4x = 12$$

$$\Rightarrow x = \frac{12}{4} = 3$$

Solution: (3,0)

Hence, two different solutions for equation are (0,4); (3,0)

$$(ii) 2x + 5y = 0$$

Sol: Let
$$x = o \Rightarrow 2 \times 0 + 5y = 0$$

$$\Rightarrow 5y = 0$$

$$\Rightarrow v = 0$$

Solution: (0,0)

Let
$$x = 1 \Rightarrow 2 \times 1 + 5y = 0$$

$$\Rightarrow$$
 2 + 5 $y = 0$

$$\Rightarrow 5y = -2$$

$$\Rightarrow y = \frac{-2}{5}$$

Solution:
$$\left(1, \frac{-2}{5}\right)$$

Hence, two different solutions for equation are (0,0); $\left(1,\frac{-2}{5}\right)$

$$(iii) \quad 3y + 4 = 0$$

$$Sol: 3y + 4 = 0$$

$$\Rightarrow 3y = -4$$

$$\Rightarrow y = \frac{-4}{3}$$

Solutions:
$$\left(0, \frac{-4}{3}\right), \left(1, \frac{-4}{3}\right)$$

EXERCISE 4.2

- 1. Which one of the following options is true, and why? y = 3x + 5 has
 - (i) a unique solution, (ii) only two solutions, (iii) infinitely many solutions

Sol: (iii) infinitely many solutions is true

2. Write four solutions for each of the following equations:

$$(i)2x + y = 7$$

(a) Let
$$x = 0 \Rightarrow 2 \times 0 + y = 7$$

$$\Rightarrow y = 7$$

Solution: (0,7)

(b) Let
$$x = 2 \implies 2 \times 2 + y = 7$$

$$\Rightarrow$$
 4 + y = 7

$$\Rightarrow y = 7 - 4$$

$$\Rightarrow y = 3$$

Solution: (2,3)

(c) Let
$$x = 4 \implies 2 \times 4 + y = 7$$

$$\Rightarrow$$
 8 + y = 7

$$\Rightarrow y = 7 - 8$$

$$\Rightarrow y = -1$$

$$Solution: (4, -1)$$

(d) Let
$$y = 0 \implies 2x + 0 = 7$$

$$\Rightarrow 2x = 7$$

$$\Rightarrow x = \frac{7}{2}$$

Solution: $\left(\frac{7}{2},0\right)$

Hence, four different solutions for equation are (0,7); (2,3); (4,-1); $(\frac{7}{2},0)$

 $(ii)\pi x + y = 9$

(a) Let
$$x = 0 \Rightarrow \pi \times 0 + y = 9$$

$$\Rightarrow 0 + y = 9$$

$$\Rightarrow y = 9$$

Solution: (0,9)

(b) Let
$$x = 1 \Rightarrow \pi \times 1 + y = 9$$

 $\Rightarrow \pi + y = 69$
 $\Rightarrow y = 9 - \pi$
Solution: $(1,9 - \pi)$

(c) Let $x = -1 \Rightarrow \pi \times (-1) + y = 9$ $\Rightarrow -\pi + y = 69$ $\Rightarrow y = 9 + \pi$ Solution: $(-1.9 + \pi)$

(d) Let
$$y = 0 \Rightarrow \pi x + 0 = 9$$

$$\Rightarrow \pi x = 9$$

$$\Rightarrow x = \frac{9}{\pi}$$
Solution: $\left(\frac{9}{\pi}, 0\right)$

Hence, four different solutions for equation are (0,9); $(1,9-\pi)$; $(-1,9+\pi)$; $(\frac{9}{\pi},0)$

(iii)x = 4y

(a) Let
$$x = 0 \Rightarrow 0 - 4y = 0$$

$$\Rightarrow -4y = 0$$

$$\Rightarrow y = 0$$
Solution: (0.0)

Solution: (0,0)

(b) Let
$$x = 4 \Rightarrow 4 = 4y$$

$$\Rightarrow y = \frac{4}{4} = 1$$
Solution: (4,1)

(c) Let $x = 2 \Rightarrow 2 = 4y$

Solution: $\left(2,\frac{1}{2}\right)$

(d) Let $y = -1 \Rightarrow x = 4 \times (-1)$ Solution: (-4, -1)

Hence, four different solutions for equation are (0,0); (4,1); $(2,\frac{1}{2})(-4,-1)$

Check which of the following are solutions of the equation x - 2y = 4 and which are not:

$$(i)(0,2)(ii)(2,0)(iii)(4,0)(iv)(\sqrt{2},4\sqrt{2})(v)(1,1)$$

Sol: (i)(0,2)

LHS =
$$x - 2y = 0 - 2 \times 2 = 0 - 4 = -4 \neq RHS$$

 \therefore (0, 2) is not a solution to the equation.

(ii) (2,0)

LHS =
$$x - 2y = 2 - 2 \times 0 = 2 - 0 = 2 \neq RHS$$

 \therefore (2,0) is not a solution to the equation.

(iii) (4,0)

LHS =
$$x - 2y = 4 - 2 \times 0 = 4 - 0 = 4 = RHS$$

 \therefore (4,0) is a solution to the equation

(iv)
$$(\sqrt{2}, 4\sqrt{2})$$

LHS =
$$x - 2y = \sqrt{2} - 2 \times 4\sqrt{2} = \sqrt{2} + 8\sqrt{2} = 9\sqrt{2} \neq RHS$$

 \therefore $(\sqrt{2}, 4\sqrt{2})$ is not a solution to the equation.

$$(v)$$
 $(1,1)$

LHS =
$$x - 2y = 1 - 2 \times 1 = 1 - 2 = -1 \neq RHS$$

 \therefore (1,1) is not a solution to the equation.

4. Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

Sol: Given equation:
$$2x + 3y = k$$

If
$$x = 2$$
, $y = 1$ is a solution of the given equation then

$$2 \times 2 + 3 \times 1 = k$$

$$4 + 3 = k$$

$$k = 7$$

Some more problems for brain boosting:

1. If x = 3, y = 2 is a solution of the equation 5x-7y = k, find the value of k and write the resultant equation.

Solution: If x = 3, y = 2 is a solution of the equation 5x - 7y = k then

$$5 \times 3 - 7 \times 2 = k$$

$$15 - 14 = k$$

$$1 = k$$

$$k = 1$$

The resultant equation is 5x - 7y = 1.

2. If x = 2k + 1 and y = k is a solutions of the equation 5x + 3y - 7 = 0, find the value of k.

Solution: It is given that x = 2k + 1 and y = k is a solution of the equation 5x + 3y - 7 = 0

by substituting the value of x and y in the equation we get.

$$5(2k+1) + 3k - 7 = 0$$

$$10k + 5 + 3k - 7 = 0$$

$$13k - 2 = 0$$

$$13k = 2$$

$$k = \frac{2}{13}$$

https://sureshmathsmaterial.com/