CHAPTER
10

IX-MATHEMATICS-NCERT(2023-24)
10. HERON'S FORMULA

PREPARED BY: BALABHADRA SURESH
https://sureshmathsmaterial.com/

Heron of Alexandria

1. Heron's formula:

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
Where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are sides of the triangle and $\mathrm{s}=\frac{a+b+c}{2}$
$s=$ semi-perimeter i.e., half the perimeter of the triangle

Example 1 : Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 cm

Sol: $\mathrm{a}=8 \mathrm{~cm}$ and $\mathrm{b}=11 \mathrm{~cm}$.
Perimeter of the triangle $=32 \mathrm{~cm}$

$$
\begin{aligned}
& a+b+c=32 \\
& 8+11+c=32 \\
& c=32-19=13 \mathrm{~cm} \\
& 2 \mathrm{~s}=32 \mathrm{~cm}, \text { i.e., } \mathrm{s}=16 \mathrm{~cm}, \\
& \mathrm{~s}-\mathrm{a}=(16-8) \mathrm{cm}=8 \mathrm{~cm}, \\
& \mathrm{~s}-\mathrm{b}=(16-11) \mathrm{cm}=5 \mathrm{~cm}, \\
& \mathrm{~s}-\mathrm{c}=(16-13) \mathrm{cm}=3 \mathrm{~cm} .
\end{aligned}
$$

$$
\text { Area of triangle }=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
=\sqrt{16 \times 8 \times 5 \times 3}
$$

$$
=\sqrt{2 \times 8 \times 8 \times 5 \times 3}
$$

$$
=8 \sqrt{2 \times 5 \times 3}=8 \sqrt{30} \mathrm{~cm}^{2}
$$

Example 2 : A triangular park ABC has sides $120 \mathrm{~m}, 80 \mathrm{~m}$ and 50 m (see Fig. 10.4). A gardener Dhania has to put a fence all around it and also plant grass inside. How much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of ${ }^{\prime} 20$ per metre leaving a space 3 m wide for a gate on one side.

Solution: $a=120 m, b=80 m, c=50 m$

$$
\begin{gathered}
s=\frac{a+b+c}{2}=\frac{50+80+120}{2}=\frac{250}{2}=125 m \\
s=125 m \\
s-a=(125-120) m=5 \mathrm{~m},
\end{gathered}
$$

$$
\begin{aligned}
& s-b=(125-80) m=45 m \\
& s-c=(125-50) m=75 m
\end{aligned}
$$

$$
\text { Area of the park }=\sqrt{s(s-a)(s-b)(s-c)}
$$

$$
=\sqrt{125 \times 5 \times 45 \times 75}
$$

$$
=\sqrt{25 \times 5 \times 5 \times 3 \times 15 \times 25 \times 3}
$$

$$
=25 \times 5 \times 3 \times \sqrt{15}=375 \sqrt{15} \mathrm{~m}^{2}
$$

Perimeter of the park $=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=250 \mathrm{~m}$
Length of the wire needed for fencing $=250 \mathrm{~m}-3 \mathrm{~m}=247 \mathrm{~m}$
The cost of fencing $=₹ 20 \times 247=₹ 4940$.
Example 3 : The sides of a triangular plot are in the ratio of $3: 5: 7$ and its perimeter is 300 m . Find its area.

Sol: The ratio of sides of triangle $=3: 5: 7$
Let the sides $a=3 x, b=5 x, c=7 x$
Perimeter of the triangle $=300 \mathrm{~m}$
$3 x+5 x+7 x=300$
$15 x=300$
$x=\frac{300}{15}=20$
$a=3 \times 20=60 \mathrm{~m}, b=5 \times 20=100 \mathrm{~m}, c=7 \times 20=140 \mathrm{~m}$
$s=\frac{60+100+140}{2}=\frac{300}{2}=150 \mathrm{~m}$
Area of the plot $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{150 \times(150-60) \times(150-100) \times(150-140)} m^{2}$
$=\sqrt{150 \times 90 \times 50 \times 10} \mathrm{~m}^{2}$
$=\sqrt{3 \times 50 \times 3 \times 3 \times 10 \times 50 \times 10} \mathrm{~m}^{2}$
$=3 \times 10 \times 50 \times \sqrt{3} \mathrm{~m}^{2}$
$=1500 \sqrt{3} \mathrm{~m}^{2}$

EXERCISE 10.1

1. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Sol: $2 s=3 a$
$s=\frac{3 a}{2}$
$s-a=\frac{3 a}{2}-a=\frac{3 a-2 a}{2}=\frac{a}{2}$

Area of the signal board $=\sqrt{s(s-a)(s-a)(s-a)}$
$=\sqrt{\frac{3 a}{2} \times \frac{a}{2} \times \frac{a}{2} \times \frac{a}{2}}=\frac{\sqrt{3} \times a \times a}{2 \times 2}=\frac{\sqrt{3}}{4} a^{2}$
If perimeter of the board $=180 \mathrm{~cm}$
$3 a=180 \mathrm{~cm}$
$a=\frac{180}{3}=60 \mathrm{~cm}$
Area of the signal board $=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times 60 \times 60=900 \sqrt{3} \mathrm{~cm}^{2}$
Method 2:
Let $\mathrm{a}=2 \mathrm{x}$
$2 s=6 x \Rightarrow s=\frac{6 x}{2}=3 x$
$s-a=3 x-2 x=x$
Area of the signal board $=\sqrt{s(s-a)(s-a)(s-a)}$
$=\sqrt{3 x \times x \times x \times x}=\sqrt{3 x^{4}}=\sqrt{3} x^{2}=\sqrt{3} \times\left(\frac{a}{2}\right)^{2}=\frac{\sqrt{3}}{4} a^{2}$
2. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig. 10.6). The advertisements yield earnings of ₹ $5000 \mathrm{per}^{2}$ per year. A company hired one of its walls for 3 months. How much rent did it pay?

$s=\frac{a+b+c}{2}=\frac{122+22+120}{2}=\frac{264}{2}=132 \mathrm{~m}$
Area of the triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{132(132-122)(132-22)(132-120)}$
$=\sqrt{132 \times 10 \times 110 \times 12}$
$=\sqrt{11 \times 12 \times 10 \times 11 \times 10 \times 12}$
$=10 \times 11 \times 12=1320 \mathrm{~m}^{2}$
Rent for $1 \mathrm{~m}^{2}$ area per year=₹ 5000
Rent for $1 \mathrm{~m}^{2}$ area per 3 months $=\frac{₹ 5000}{12} \times 3=₹ 1250$
Rent for $1320 \mathrm{~m}^{2}$ area per 3 months $=₹ 1250 \times 1320=₹ 16,50,000$
3. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig. 10.7). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m , find the area painted in colour.
Sol: $a=15 \mathrm{~m}, \mathrm{~b}=11 \mathrm{~m}, \mathrm{c}=6 \mathrm{~m}$

$$
\begin{aligned}
& s=\frac{a+b+c}{2}=\frac{15+11+6}{2}=\frac{32}{2}=16 \mathrm{~m} \\
& \text { Area of the triangle }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{16(16-15)(16-11)(16-6)} \\
& =\sqrt{16 \times 1 \times 5 \times 10} \\
& =\sqrt{4 \times 4 \times 5 \times 5 \times 2} \\
& =20 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

\therefore The area painted in colour $=20 \sqrt{2} \mathrm{~m}^{2}$
4. Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Sol: $\mathrm{a}=18 \mathrm{~cm}$ and $\mathrm{b}=10 \mathrm{~cm}$.
Perimeter of the triangle $=42 \mathrm{~cm}$
$a+b+c=42$
$18+10+c=42$
$c=42-28=14 \mathrm{~cm}$
$2 \mathrm{~s}=42 \mathrm{~cm}$, i.e., $\mathrm{s}=21 \mathrm{~cm}$,

Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-18)(21-10)(21-14)}$
$=\sqrt{21 \times 3 \times 11 \times 7}$
$=\sqrt{3 \times 7 \times 3 \times 11 \times 7}=3 \times 7 \times \sqrt{11} \mathrm{~cm}^{2}=21 \sqrt{11} \mathrm{~cm}^{2}$
5. Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

Sol: The ratio of sides $=12: 17: 25$
Let the sides are $a=12 x, b=17 x, c=25 x$
Perimeter $=540 \mathrm{~cm}$
$12 x+17 x+25 x=540$
$54 x=540$
$x=10$
$a=12 \times 10=120 \mathrm{~cm}, b=17 \times 10=170 \mathrm{~cm}, c=25 \times 10=250 \mathrm{~cm}$
$2 \mathrm{~s}=540 \mathrm{~cm}$
$\mathrm{s}=270 \mathrm{~cm}$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{270(270-120)(270-170)(270-250)}$
$=\sqrt{270 \times 150 \times 100 \times 20}$
$=\sqrt{3 \times 3 \times 3 \times 10 \times 3 \times 5 \times 5 \times 2 \times 10 \times 10 \times 2 \times 10}$
$=3 \times 3 \times 2 \times 5 \times 10 \times 10=9000 \mathrm{~cm}^{2}$
6. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.

Sol: $a=12 \mathrm{~cm}, b=12 \mathrm{~cm}$
Perimeter $=30 \mathrm{~cm}$
$a+b+c=30$
$12+12+c=30$
$24+c=30$
$c=30-24=6 \mathrm{~cm}$
$2 s=30 \mathrm{~cm} \Rightarrow s=15 \mathrm{~cm}$
Area of triangle $=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\sqrt{15(15-12)(15-12)(15-6)} \\
& =\sqrt{15 \times 3 \times 3 \times 9}=9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Proof of Heron'sformula:

$2 s=P=a+b+c$
From $\triangle A B D$
$x^{2}+h^{2}=c^{2}$
$h^{2}=c^{2}-x^{2} \rightarrow(1)$
From (1) and (2)
$c^{2}-x^{2}=b^{2}-(a-x)^{2}$
$c^{2}-x^{2}=b^{2}-a^{2}+2 a x-x^{2}$
$c^{2}=b^{2}-a^{2}+2 a x$
$x=\frac{a^{2}+c^{2}-b^{2}}{2 a}$
Substitute x value in (1)

From \triangle ADC

$$
\begin{aligned}
& (a-x)^{2}+h^{2}=b^{2} \\
& h^{2}=b^{2}-(a-x)^{2} \rightarrow(2)
\end{aligned}
$$

$h^{2}=c^{2}-x^{2}=(c+x)(c-x)$
$=\left(c+\frac{a^{2}+c^{2}-b^{2}}{2 a}\right)\left(c-\frac{a^{2}+c^{2}-b^{2}}{2 a}\right)$
$=\left(\frac{2 a c+a^{2}+c^{2}-b^{2}}{2 a}\right)\left(\frac{2 a c-a^{2}-c^{2}+b^{2}}{2 a}\right)$
$=\left(\frac{(a+c)^{2}-b^{2}}{2 a}\right)\left(\frac{b^{2}-(a-c)^{2}}{2 a}\right)$
$=\left[\frac{(a+c+b)(a+c-b)}{2 a}\right]\left[\frac{(b+a-c)(b-a+c)}{2 a}\right]$
$=\left[\frac{2 s(2 s-2 b)}{2 a}\right]\left[\frac{(2 s-2 c)(2 s-2 a)}{2 a}\right]$
$=\left[\frac{16 s(s-a)(s-b)(s-c)}{4 a^{2}}\right]$
$=\frac{4 s(s-a)(s-b)(s-c)}{a^{2}}$
$h=\sqrt{\frac{4 s(s-a)(s-b)(s-c)}{a^{2}}}$
$h=\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{a}$
Area of the triangle $=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times a \times \frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{a} \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

Heron (10 C.E. -75 C.E.)

For VI to X all chapters notes visit my website
https://sureshmathsmaterial.com/

