CHAPTER

9

1. Circle: A circle is a collection of all the points in a plane which are at a fixed distance from a fixed point on the plane. The fixed point ' 0 ' is called the centre of the circle and the fixed distance OA , is called the radius of the circle.
2. A line segment joining any two points on the circle that passes through the centre is called the diameter (AB)
3. A line segment joining any two points on the circle is called a chord (CD)
4. The part of the circle between any two points on it is called an arc.
5. If the end points of an arc become the end points of a diameter then
 such an arc is called a semi-circular arc or a semicircle.
6. If the arc is smaller than a semicircle, then the arc is called a minor arc and if the arc is longer than a semicircle, then the arc is called a major arc
7. The region between the chord and the minor arc is called the minor segment and the region between chord and the major arc is called the major segment.
8. The area enclosed by an arc and the two radii joining the centre to the end points of an arc is

(ii)

(iii) called a sector. One is minor sector and another is major sector.

Angle Subtended by a Chord at a Point

1. In adjacent figure $\angle P R Q$ is called the angle subtended by the line segment $P Q$ at the point R and \angle $P O Q$ is the angle subtended by the chord $P Q$ at the centre 0
2. $\angle P R Q$ and $\angle P S Q$ are respectively the angles subtended by $P Q$ at points R and S on the major and minor arcs $P Q$.

Theorem 9.1 : Equal chords of a circle subtend equal angles at the centre.

Proof: AB and CD are two equal chords of a circle with centre 0 .
In $\triangle A O B$ and $\triangle C O D$
$\mathrm{OA}=\mathrm{OC}$ (Radii of a circle)

$\mathrm{OB}=\mathrm{OD}$ (Radii of a circle)
$\mathrm{AB}=\mathrm{CD}$ (Given)
$\Delta \mathrm{AOB} \cong \triangle \mathrm{COD}(\mathrm{By}$ SSS congruence rule)
$\angle \mathrm{AOB}=\angle \mathrm{COD}(\mathrm{By} \mathrm{CPCT})($ Corresponding parts of congruent triangles)
Theorem 9.2 : If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.

Proof: The angles subtended by the chords AB and CD of a circle at the centre 0 are $\angle \mathrm{AOB}$ and $\angle \mathrm{COD}$ respectively.

Given $\angle \mathrm{AOB}=\angle \mathrm{COD}$
In $\triangle A O B$ and $\triangle C O D$
$O A=O C$ (Radii of a circle)

$\mathrm{OB}=\mathrm{OD}$ (Radii of a circle)
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Given)
$\Delta \mathrm{AOB} \cong \triangle \mathrm{COD}$ (By SAS congruence rule)
$\mathrm{AB}=\mathrm{CD}(\mathrm{By} \mathrm{CPCT})$

EXERCISE 9.1

1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Sol: $\mathrm{C}_{1}, \mathrm{C}_{2}$ are two congruent circles.
In $\triangle A O B$ and $\triangle C O^{I} D$
$\mathrm{OA}=\mathrm{O}^{\mathrm{I}} \mathrm{C}$ (Radii ofcongruent circles)
$\mathrm{OB}=\mathrm{O}^{\mathrm{I}} \mathrm{D}$ (Radii ofcongruent circles)

$\mathrm{AB}=\mathrm{CD}$ (Given)
$\triangle A O B \cong \triangle C O^{\mathrm{I}} \mathrm{D}($ By SSS congruence rule $)$
$\angle \mathrm{AOB}=\angle \mathrm{CO}{ }^{\mathrm{I}} \mathrm{D}(\mathrm{By} \mathrm{CPCT})$
2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Sol: $\mathrm{C}_{1}, \mathrm{C}_{2}$ are two congruent circles
$\mathrm{OA}=\mathrm{O}^{\mathrm{I}} \mathrm{C}$ (Radii ofcongruent circles)
$\mathrm{OB}=\mathrm{O}^{\mathrm{I}} \mathrm{D}$ (Radii ofcongruent circles)
$\angle \mathrm{AOB}=\angle \mathrm{CO}^{\mathrm{I}} \mathrm{D}$ (Given)
$\triangle A O B \cong \triangle C O^{I} D($ By SAS congruence rule $)$

$\mathrm{AB}=\mathrm{CD}(\mathrm{By} \mathrm{CPCT})$

Perpendicular from the Centre to a Chord

Theorem 9.3 : The perpendicular from the centre of a circle to a chord bisects the chord.

Proof: AB is a chord for the circle with centre 0 and $0 M \perp A B$.
Joining 0 to A and B
In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{BMO}$

$\mathrm{OA}=\mathrm{OB}$ (Radii of a circle)
$\mathrm{OM}=\mathrm{OM}($ Common $))$
$\angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}(\mathrm{OP} \perp \mathrm{AB})$
$\Delta \mathrm{AMO} \cong \Delta \mathrm{BMO}$ (By RHS congruence rule)
$\mathrm{AM}=\mathrm{BM}(\mathrm{By} \mathrm{CPCT})$
Theorem 9.4 : The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.

Proof: Let AB be a chord of a circle with centre 0 and 0 is joined to the mid-point M of $A B$. Join $O A$ and $O B$.

In $\triangle \mathrm{AMO}$ and $\triangle \mathrm{BMO}$
$\mathrm{OA}=\mathrm{OB}$ (Radii of a circle)

$\mathrm{OM}=\mathrm{OM}($ Common $))$
$A M=B M(M$ is midpoint of $A B)$
$\Delta \mathrm{AMO} \cong \Delta \mathrm{BMO}$ (By SSS congruence rule)
$\angle \mathrm{AMO}=\angle \mathrm{BMO}($ By CPCT $)$

But $\angle \mathrm{AMO}$ and $\angle \mathrm{BMO}$ are linear pair angles.
So, $\angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$

Equal Chords and their Distances from the Centre

The length of the perpendicular from a point to a line is the distance of the line from the point.

Theorem 9.5 : Equal chords of a circle (or of congruent circles) are equidistant from the centre (or centres).

Proof:PQ and RS are two equal chords of circle with center 0.
OL and OM are perpendiculars to PQ and RS respectively.
We know that the perpendicular from the centre of a circle to a chord bisects the chord.
$P L=Q L=\frac{P Q}{2}$ and $S M=R M=\frac{R S}{2}$

But $\mathrm{PQ}=\mathrm{RS}$ (Given)
$\Rightarrow \mathrm{PL}=\mathrm{RM} \rightarrow(1)$
In \triangle POL and $\triangle R O M$
$\angle \mathrm{OLP}=\angle \mathrm{OMR}=90^{\circ}$
$0 P=O R$ (Radii of same circle)
$\mathrm{PL}=\mathrm{RM}($ from $(1))$
$\Delta \mathrm{POL} \cong \triangle \mathrm{ROM}$ (by RHS rule)
$\mathrm{OL}=\mathrm{OM}($ by CPCT $)$
Hence proved.
Theorem 9.6 : Chords equidistant from the centre of a circle are equal in length.
Example 1 : If two intersecting chords of a circle make equal angles with the diameter passing through their point of intersection, prove that the chords are equal.

Sol: AB and CD are two chords of a circle, with centre 0 intersecting at a point E .

PQ is a diameter through E , such that $\angle \mathrm{AEQ}=\angle \mathrm{DEQ}$.
Draw $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{CD}$.

$\angle \mathrm{LEO}=\angle \mathrm{MEO} \rightarrow(1)$
$\operatorname{In} \Delta$ OLE and Δ OME
$\angle \mathrm{LEO}=\angle \mathrm{MEO}($ from $(1))$
$\angle \mathrm{OLE}=\angle \mathrm{OME}\left(=90^{\circ}\right)$
$\mathrm{EO}=\mathrm{EO}($ Common $)$
$\Delta \mathrm{OLE} \cong \Delta$ OME (AAS congruency rule)
$\Rightarrow \mathrm{OL}=\mathrm{OM}$ (by CPCT)
$\Rightarrow \mathrm{AB}=\mathrm{CD}$

EXERCISE 9.2

1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Sol: Let A,B are the centers of the circles.
CD is the common chord.
$\mathrm{AC}=\mathrm{AD}=5 \mathrm{~cm} ; \mathrm{BE}=3 \mathrm{~cm}$
$\mathrm{AB} \perp \mathrm{CD}$
From Pythagoras theorem
$B C^{2}=A C^{2}-A B^{2}=5^{2}-4^{2}=25-16=9$
$B C=3 \mathrm{~cm}$
$\mathrm{CD}=3+3=6 \mathrm{~cm}$
Length of the chord $=6 \mathrm{~cm}$
2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Sol: $A B, C D$ are two chords and $A B=C D$.
Let AB, CD intersect at E .
Now we prove $\mathrm{AE}=\mathrm{DE}$ and $\mathrm{CE}=\mathrm{BE}$
$O P$ and $O Q$ are perpendiculars to $A B$ and $C D$ from 0 .

We know that the perpendicular from the centre of a circle to a chord bisects the chord.
$\mathrm{AP}=\mathrm{PB}=\mathrm{CQ}=\mathrm{QD} \rightarrow(1)$

In $\triangle O P E$ and $\triangle O Q E$
$\angle O P E=\angle O Q E=90^{\circ}$
$O P=O Q$ (Distance from centre to equal chords)
$O E=O E$ (common)
$\triangle O P E \cong \triangle O Q E($ RHS congruence rule $)$
$P E=Q E(B y C P C T) \rightarrow(2)$
Now $A E=A P+P E=D Q+Q E[$ From (1)and (2) $]$
$\therefore \mathrm{AE}=\mathrm{DE}$
Given $A B=C D$
$A B-A E=C D-D E(\because A E=D E)$
$\therefore \mathrm{BE}=\mathrm{CE}$
Hence proved.
3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Sol: $A B, C D$ are two chords and $A B=C D$.
Let AB, CD intersect at E .
Now we show that $\angle O E A=\angle O E D$
Let $O P$ and $O Q$ are perpendiculars to $A B$ and $C D$ from 0 .

In $\triangle O P E$ and $\triangle O Q E$
$\angle O P E=\angle O Q E=90^{\circ}$
$O P=O Q$ (Distance from centre to equal chords)
$O E=O E$ (common)
$\triangle O P E \cong \triangle O Q E($ RHS congruence rule $)$
$\angle \mathrm{OEP}=\angle \mathrm{OEQ}(B y C P C T)$
$\Rightarrow \angle O E A=\angle O E D$
4. If a line intersects two concentric circles (circles with the same centre) with centre 0 at A, B, C and D, prove that $A B=C D$ (see Fig. 9.12).

Sol: Let C_{1} and C_{2} are two concentric circles with centre O.
A line intersects C_{1} and C_{2} at B, C and A, D.

Let $\mathrm{OE} \perp \mathrm{AD}$

We know that the perpendicular from the centre of a circle to a chord bisects the chord.
In circle $C_{2}: A E=E D \rightarrow(1)$
In circle $C_{1}: B E=E C \rightarrow(2)$
From (1)-(2)
$A E-B E=E D-E C$
$A B=C D$
5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Sol: Join OR,OS,OM,RS,MS. OS intersect RM at P
In \triangle ORS and $\triangle 0 M S$
OR=0M (Radii)
RS $=$ MS (Given)
OS $=0 \mathrm{~S}$ (Common)
$\Delta \mathrm{ORS} \cong \Delta \mathrm{OMS}$ (By SSS congruence rule)

$\angle \mathrm{ROS}=\angle \mathrm{MOS}($ By CPCT $)$
$\therefore \angle \mathrm{ROP}=\angle \mathrm{MOP} \rightarrow(1)$
In \triangle ROP and $\triangle M O P$
$\mathrm{RO}=\mathrm{MO}$ (Radii)
$\angle \mathrm{ROP}=\angle \mathrm{MOP}$ (From (1))
OP=OP (Common)
$\triangle \mathrm{ROP} \cong \triangle \mathrm{MOP}$ (By SAS congruence rule)
$\mathrm{RP}=\mathrm{PM}$ and $\angle \mathrm{RPO}=\angle \mathrm{MPO}(\mathrm{By} \mathrm{CPCT}) \rightarrow(2)$
$\angle \mathrm{RPO}=\angle \mathrm{MPO}=90^{\circ}$
So, OP bisects the chord RM and $\mathrm{OP} \perp \mathrm{RM}$
Let $\mathrm{RP}=\mathrm{PM}=y ; \quad O P=x \Rightarrow \mathrm{PS}=5-x$
In $\triangle \mathrm{OPR}$
$x^{2}+y^{2}=5^{2}$ (From Pythagoras theorem)
$y^{2}=25-x^{2} \rightarrow(3)$
In \triangle RPS
$(5-x)^{2}+y^{2}=6^{2}$
$y^{2}=36-(5-x)^{2}$
$y^{2}=36-\left(25-10 x+x^{2}\right)$
$y^{2}=36-25+10 x-x^{2}$
$y^{2}=11+10 x-x^{2} \rightarrow(4)$
From (3) and (4)
$11+10 x-x^{2}=25-x^{2}$
$10 x=25-11=14$
$x=\frac{14}{10}=1.4 \mathrm{~cm}$
From (3)
$y^{2}=25-x^{2}=25-(1.4)^{2}=25-1.96=23.04$
$y=\sqrt{23.04}=4.8 \mathrm{~cm}$
The distance between Reshma and Mandip $=2 y=2 \times 4.8 \mathrm{~cm}=9.6 \mathrm{~cm}$
6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol: Ankur (A), Syed(S) and David(D)
Let $\mathrm{AS}=\mathrm{SD}=\mathrm{DA}=2 x$
Let $\mathrm{OM} \perp \mathrm{AD}$
$\Delta \mathrm{AMO} \cong \triangle \mathrm{DMO}$ (By RHS congruence rule)
$\mathrm{AM}=\mathrm{MD}(\mathrm{By} \mathrm{CPCT})$
$\therefore \mathrm{AM}=\mathrm{MD}=x$
From \triangle AMS
$S M^{2}=(2 x)^{2}-x^{2}=4 x^{2}-x^{2}=3 x^{2}$

$S M=\sqrt{3 x^{2}}=\sqrt{3} x$
$O M=S M-O S=\sqrt{3} x-20$
From $\triangle \mathrm{AMO}$
$O M^{2}+A M^{2}=O A^{2}$
$O M^{2}=O A^{2}-A M^{2}$
$O M^{2}=20^{2}-x^{2}=400-x^{2}$
$(\sqrt{3} x-20)^{2}=400-x^{2}$
$3 x^{2}-40 \sqrt{3} x+400=400-x^{2}$
$3 x^{2}+x^{2}=40 \sqrt{3} x$
$4 x^{2}=40 \sqrt{3} x$
$x=10 \sqrt{3} \mathrm{~m}$
The length of the string of each phone $=2 x=2 \times 10 \sqrt{3}=20 \sqrt{3} \mathrm{~m}$

Angle Subtended by an Arc of a Circle

1. If two chords of a circle are equal, then their corresponding arcs are congruent and conversely, if two arcs are congruent, then their corresponding chords are equal.

2. Congruent arcs (or equal arcs) of a circle subtend equal angles at the centre.

Theorem 9.7 : The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

(i)

(ii)

(iii)

Given: : Let O be the centre of the circle. PQ is an arc subtending $\angle \mathrm{POQ}$ at the centre. Let A be a point on the remaining part of the circle.

Proof: Draw ray $\overrightarrow{O A}$
In $\triangle A O P, O A=O P$ (radii of the same circle)
$\Rightarrow \angle \mathrm{OAP}=\angle \mathrm{OPA}=x$ (say)(Angles opposite to equal sides are equal)
simlarly $\operatorname{In} \triangle A O Q, O A=O Q$

$\Rightarrow \angle \mathrm{OAQ}=\angle \mathrm{OQA}=y$ (say)
Let $\angle \mathrm{POB}=p$ and $\angle \mathrm{QOB}=q$
$p=x+x$ (exterior angle is equal to sum of the opposite interior angles)
$p=2 x$
Similarly $q=2 y$
$p+q=2 x+2 y$
$p+q=2(x+y)$
$\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$
For the case (iii), where $P Q$ is the major arc
Reflex of $\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$
Theorem 9.8 : Angles in the same segment of a circle are equal.

Example: Angle in a semicircle is a right angle.

Sol: PQ is a diameter and ' 0 ' is the centre of the circle.
$\therefore \angle \mathrm{POQ}=180$ o [Angle on a straight line]
$\angle \mathrm{POQ}=2 \angle \mathrm{PAQ}$ [Angle subtended by an arc at the centre is twice the angle subtended by it at any other point on circle]

$\therefore \angle \mathrm{PAQ}=\frac{\angle \mathrm{POQ}}{2}=\frac{180^{\circ}}{2}=90^{\circ}$
Theorem 9.9 : If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle (i.e. they are concyclic).

Proof: AB is a line segment, which subtends equal angles at two points C and D . That is $\angle \mathrm{ACB}$ $=\angle \mathrm{ADB}$.
R.T.P : A, B, C and D are concyclic.(they lie on the same circle)
let us draw a circle through the points A, C and B . Suppose it does not pass through the point D. Then it will intersect AD (or extended AD) at a point, say E (or E^{\prime}).

If points $\mathrm{A}, \mathrm{C}, \mathrm{E}$ and B lie on a circle,
$\angle \mathrm{ACB}=\angle \mathrm{AEB}$

But it is given that $\angle \mathrm{ACB}=\angle \mathrm{ADB}$.
$\therefore \angle \mathrm{AEB}=\angle \mathrm{ADB}$.

This is not possible unless E coincides with D.
Cyclic Quadrilateral: A quadrilateral ABCD is called cyclic if all the four vertices A, B, C, D of it lie on a circle.

Theorem 9.10 : The sum of either pair of opposite angles of a cyclic
 quadrilateral is 180°.(OR)

If ABCD is a Cyclic quadrilateral then $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$
Theorem 9.11 : If the sum of a pair of opposite angles of a quadrilateral is $180 \div$, the quadrilateral is cyclic.(OR)

If in quadrilateral $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$ then ABCD is a Cyclic quadrilateral.
Example 2 : In Fig. 9.19, AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and $B D$ when extended intersect at a point E. Prove that $\angle A E B=60^{\circ}$.

Solution : Join OC, OD and BC.
In $\triangle O D C, O C=O D=D C$
$\therefore \Delta \mathrm{ODC}$ is an equilateral.
$\Rightarrow \angle \mathrm{COD}=60^{\circ}$
$\angle \mathrm{CBD}=\frac{1}{2} \angle \mathrm{COD}$ (By Angle subtended theorem)

$\angle C B D=\frac{1}{2} \times 60^{0}=30^{\circ} \Rightarrow \angle C B E=30^{\circ}$
$\angle A C B=90^{\circ}\left(\right.$ angle subtended by semi - circle is $\left.90^{\circ}\right)$
$\angle \mathrm{BCE}=180^{\circ}-\angle \mathrm{ACB}=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{CEB}=90^{\circ}-\angle C B E=90^{\circ}-30^{\circ}=60^{\circ}$, i.e., $\angle \mathrm{AEB}=60^{\circ}$
Example 3 : In Fig 9.20, ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle \mathrm{DBC}=$ 55° and $\angle B A C=45^{\circ}$, find $\angle B C D$.

Solution: $\angle \mathrm{CAD}=\angle \mathrm{DBC}=55^{\circ}$ (Angles in the same segment)
$\therefore \angle \mathrm{DAB}=\angle \mathrm{CAD}+\angle \mathrm{BAC}=55^{\circ}+45^{\circ}=100^{\circ}$
But $\angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$ (Opposite angles of a cyclic quadrilateral)

So,$\angle \mathrm{BCD}=180^{\circ}-100^{\circ}=80^{\circ}$

Example 4 : Two circles intersect at two points A and B . AD and AC are diameters to the two circles (see Fig. 9.21). Prove that B lies on the line segment DC.

Solution : Join AB.

$$
\begin{aligned}
& \angle \mathrm{ABD}=90^{\circ}(\text { Angle in a semicircle }) \\
& \angle \mathrm{ABC}=90^{\circ}(\text { Angle in a semicircle })
\end{aligned}
$$

So, $\angle \mathrm{ABD}+\angle \mathrm{ABC}=90^{\circ}+90^{\circ}=180^{\circ}$

Therefore, $D B C$ is a line. That is B lies on the line segment $D C$.
Example 5: Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.

Solution : In Fig. 9.22, ABCD is a quadrilateral in which the angle bisectors $\mathrm{AH}, \mathrm{BF}, \mathrm{CF}$ and DH of internal angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively form a quadrilateral EFGH.

Now, $\angle \mathrm{FEH}=\angle \mathrm{AEB}=180^{\circ}-\angle \mathrm{EAB}-\angle \mathrm{EBA}$
$=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})$
$\angle \mathrm{FGH}=\angle \mathrm{CGD}=180^{\circ}-\angle \mathrm{GCD}-\angle \mathrm{GDC}$
$=180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
Therefore, $\angle \mathrm{FEH}+\angle \mathrm{FGH}=180^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B})+180^{\circ}-\frac{1}{2}(\angle \mathrm{C}+\angle \mathrm{D})$
$=360^{\circ}-\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D})=360^{\circ}-\frac{1}{2}\left(360^{\circ}\right)=360^{\circ}-180^{\circ}=180^{\circ}$
In EFGH the pair of opposite angles are supplementary.
So, the quadrilateral EFGH is cyclic.

EXERCISE 9.3

1. In Fig. 9.23, A, B and C are three points on a circle with centre 0 such that $\angle \mathrm{BOC}=30^{\circ}$ and $\angle \mathrm{AOB}=$ 60°. If D is a point on the circle other than the $\operatorname{arc} A B C$, find $\angle A D C$.

Sol: $\angle \mathrm{AOC}=\angle \mathrm{AOB}+\angle \mathrm{BOC}=60^{\circ}+30^{\circ}=90^{\circ}$.
The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$2 \times \angle \mathrm{ADC}=\angle \mathrm{AOC}$
$2 \times \angle \mathrm{ADC}=90^{\circ}$

$\angle \mathrm{ADC}=\frac{90^{\circ}}{2}=45^{\circ}$
2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol: 0 is the center of the circle and $A B$ is a chord with length of radius.
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$ (Radius)
$\triangle \mathrm{ABO}$ becomes an equilateral triangle.

D
$\therefore \angle \mathrm{AOB}=60^{\circ}$
Let C be a point on the major arc and D be a point on the minor arc.
The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
$2 \times \angle \mathrm{ACB}=\angle \mathrm{AOB}$
$2 \times \angle \mathrm{ACB}=60^{\circ}$
$\angle \mathrm{ACB}=\frac{60^{0}}{2}=30^{\circ}$
Since $A, B . C$ and D lie on the same circle.ADBC is a cyclic quadrilateral.
$\angle \mathrm{ACB}+\angle \mathrm{ADB}=180^{\circ}($ In a cyclic quadrilateral opposite angles are supplementary $)$
$30^{\circ}+\angle A D B=180^{\circ}$
$\angle A D B=180^{\circ}-30^{\circ}=150^{\circ}$
Required angles are $150^{\circ}, 30^{0}$.
3. In Fig. 9.24, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre 0 . Find $\angle O P R$.

Sol: We know that, the angle subtended by an arc at the center is double the angle subtended by it at any point on the remaining part of the circle.

Reflex $\angle \mathrm{POR}=2 \times \angle \mathrm{PQR}$
Reflex $\angle \mathrm{POR}=2 \times 100^{\circ}=200^{\circ}$
$\angle \mathrm{POR}=360^{\circ}-$ Reflex $\angle \mathrm{POR}=360^{\circ}-200^{\circ}=160^{\circ}$

In $\triangle \mathrm{POR}, \mathrm{OP}=\mathrm{OR}$ (Radii of the circle)
$\angle \mathrm{OPR}=\angle \mathrm{ORP}=x($ Angles of opposite to equal sides are equal)
$\angle \mathrm{OPR}+\angle \mathrm{ORP}+\angle \mathrm{POR}=180^{\circ}($ Angle sum property of triangle $)$
$x+x+160^{\circ}=180^{\circ}$

$$
\begin{aligned}
& 2 x=180^{0}-160^{0}=20^{0} \\
& x=\frac{20^{0}}{2}=10^{0} \Rightarrow \angle \mathrm{OPR}=10^{0}
\end{aligned}
$$

4. In Fig. $9.25, \angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$.

Sol: In $\triangle A B C$, the sum of all angles $=180^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{BAC}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ} \\
& \angle \mathrm{BAC}+69^{\circ}+31^{\circ}=180^{\circ} \\
& \angle \mathrm{BAC}+100^{\circ}=180^{\circ} \\
& \angle \mathrm{BAC}=180^{\circ}-100^{\circ} \\
& \angle \mathrm{BAC}=80^{\circ}
\end{aligned}
$$

We know that angles in the same segment of a circle are equal.

$$
\begin{aligned}
& \angle \mathrm{BDC}=\angle \mathrm{BAC} \\
& \angle \mathrm{BDC}=80^{\circ}
\end{aligned}
$$

5. In Fig. 9.26, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

Sol: $\angle B E C+\angle C E D=180^{\circ}($ Linear pair $)$
$130^{\circ}+\angle C E D=180^{\circ}$
$\angle C E D=180^{\circ}-130^{\circ}=50^{\circ}$

In $\triangle D E C$, the sum of all angles $=180^{\circ}$
$\angle \mathrm{CDE}+\angle \mathrm{CED}+\angle \mathrm{ECD}=180^{\circ}$
$\angle \mathrm{CDE}+50^{\circ}+20^{\circ}=180^{\circ}$
$\angle \mathrm{CDE}+70^{\circ}=180^{\circ}$
$\angle \mathrm{CDE}=180^{\circ}-70^{\circ}=110^{\circ}$
$\angle \mathrm{CDB}=110^{0}$
We know that angles in the same segment of a circle are equal.
$\angle \mathrm{BAC}=\angle \mathrm{CDB}$
$\angle \mathrm{BAC}=110^{\circ}$
6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}, \angle \mathrm{BAC}$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Sol: We know that angles in the same segment of a circle are equal.
$\angle \mathrm{CAD}=\angle \mathrm{CBD}=70^{\circ}$
$\angle \mathrm{BAC}=\angle \mathrm{BDC}=30^{\circ}$
In $\triangle A B C, A B=B C$
$\angle \mathrm{BAC}=\angle \mathrm{BCA}=30^{\circ}($ Angles opposite to equal sides are equal $)$
$\angle \mathrm{BAD}=\angle \mathrm{BAC}+\angle \mathrm{CAD}=30^{\circ}+70^{\circ}=100^{\circ}$

ABCD is a cyclic quadrilateral
$\angle \mathrm{BAD}+\angle \mathrm{BCD}=180^{\circ}$
$100^{\circ}+\angle \mathrm{BCD}=180^{0}$
$\angle \mathrm{BCD}=180^{\circ}-100^{\circ}=80^{\circ}$
$\angle \mathrm{ECD}=\angle \mathrm{BCD}-\angle \mathrm{BCA}=80^{\circ}-30^{\circ}=50^{\circ}$.
7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Sol: ABCD is a cyclic quadrilateral.
AC and BD are diameters.
We know that, the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining
 part of the circle.
$2 \times \angle \mathrm{ADC}=\angle \mathrm{AOC}$
$2 \times \angle \mathrm{ADC}=180^{\circ}$
$\angle \mathrm{ADC}=\frac{180^{\circ}}{2}=90^{\circ}$
In ABCD one angle is 90° and diagonals are equal.
So, ABCD is a rectangle.
8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol: $A B C D$ is a trapezium with $A B \| D C$ and $A D=B C$.
Draw $\mathrm{DE} \perp \mathrm{AB}$ and $\mathrm{CF} \perp \mathrm{AB}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCF}$

$\mathrm{AD}=\mathrm{BC}$ (Given)
$\angle \mathrm{AED}=\angle \mathrm{BFC}=90^{\circ}$
$\mathrm{DE}=\mathrm{CF}$ (Distance between parallel lines)
$\triangle \mathrm{ADE} \cong \triangle \mathrm{BCF}$ (By RHS congruence rule)
$\angle \mathrm{DAE}=\angle \mathrm{CBF}(\mathrm{By} \mathrm{CPCT})$
$\angle \mathrm{DAB}=\angle \mathrm{CBA} \rightarrow(1)$
$\angle \mathrm{ADC}+\angle \mathrm{DAB}=180^{\circ}$ (co- interior angles are supplementary)
$\angle \mathrm{ADC}+\angle \mathrm{CBA}=180^{\circ}$
Opposite angles are supplementary.
Hence, ABCD is a cyclic quadrilateral.
9. Two circles intersect at two points B and C. Through B, two line segments $A B D$ and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 9.27). Prove that $\angle A C P=\angle Q C D$.

Sol: Join AP and DQ
For chord AP
$\angle \mathrm{ABP}=\angle \mathrm{ACP}($ Angles in the sqme segment are equal $) \rightarrow(1)$
For chord DQ
$\angle \mathrm{QBD}=\angle \mathrm{QCD}($ Angles in the sqme segment are equal $) \rightarrow(2)$
$\angle \mathrm{ABP}=\angle \mathrm{QBD}($ vertically opposite angles $) \rightarrow(3)$
From (1),(2) and (3)
$\angle \mathrm{ACP}=\angle \mathrm{QCD}$
10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Sol: Two circles are drawn on the sides $A C$ and $B C$ of the $\triangle A B C$
The circles intersected at D.
Join CD.
$\angle \mathrm{ADC}=\angle \mathrm{BDC}=90^{\circ}($ Angle in semi circle $)$

$$
\angle \mathrm{ADC}+\angle \mathrm{BDC}=90^{\circ}+90^{\circ}
$$

$$
\angle \mathrm{ADC}+\angle \mathrm{BDC}=180^{\circ}
$$

$\triangle \mathrm{ADB}$ is a straight angle
So, D lies on AB.
11. ABC and $A D C$ are two right triangles with common hypotenuse AC . Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$.

Sol: Draw a circle with diameter AC.
ABCD is a quadrilateral.

$\angle B+\angle D=90^{\circ}+90^{\circ}=180^{\circ}$
In quadrilateral ABCD , opposite angles are supplementary
ABCD is a cyclic quadrilateral.
CD is a chord.
$\angle \mathrm{CAD}=\angle \mathrm{CBD}$ (Angles in the same segment in a circle)

12. Prove that a cyclic parallelogram is a rectangle.

Sol: Let ABCD is a cyclic parallelogram.
$\angle A+\angle C=180^{\circ}$ (opposite angles are supplementary in cyclic quadrilateral)
But $\angle A=\angle C$ (In a parallelogramopposite angle are equal)
$\therefore \angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
ABCD is a parallelogram and one interior angle is 90°
So, $A B C D$ is a rectangle.

