CHAPTER

8 IX-MATHEMATICS-NCERT-2023-24
8. QUADRILATERALS (NOTES)

PREPARED BY: BALABHADRA SURESH

1. A quadrilateral has four sides, four angles and four vertices.

Quadrilateral		Properties Trapezium A quadrilateral with a pair of parallel sides. Parallelogram: pair of parallel lines A quadrilateral with each pair of opposite sides parallel Rhombus: A parallelogram with sides of equal length.

Theorem 8.1 : A diagonal of a parallelogram divides it into two congruent triangles.

Proof: Let ABCD be a parallelogram and AC be a diagonal
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDA}$,
$B C \| A D$ and $A C$ is a transversal.
$\angle \mathrm{BCA}=\angle \mathrm{DAC}$ (Pair of alternate angles)

$A B \| D C$ and $A C$ is a transversal.
$\angle \mathrm{BAC}=\angle \mathrm{DCA}$ (Pair of alternate angles)
$\mathrm{AC}=\mathrm{CA}($ Common $)$
$\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$ (ASA rule)
Diagonal AC divides parallelogram $A B C D$ into two congruent triangles $A B C$ and CDA.

Theorem 8.2 : In a parallelogram, opposite sides are equal.

Proof: Let ABCD be a parallelogram and AC be a diagonal.
$\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$ (ASA rule)

So, $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{BC}=\mathrm{AD}(\mathrm{CPCT})$
Theorem 8.3 : If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.

Proof: ABCD be a quadrilateral and $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{BC}=\mathrm{AD}$
In $\Delta \mathrm{ABC}$ and $\Delta \mathrm{CDA}$
$\mathrm{AB}=\mathrm{DC}$ (given)

$\mathrm{BC}=\mathrm{AD}$ (given)
$\mathrm{AC}=\mathrm{AC}$ (common)
$\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$ (SSS congruence rule)
$\angle \mathrm{BAC}=\angle \mathrm{DCA}(\mathrm{CPCT})$
Alternate interior angles are equal $\Rightarrow A B \| C D$
Similarly BC || DA
Each pair of opposite sides are parallel .
$A B C D$ is a parallelogram.
Theorem 8.4 : In a parallelogram, opposite angles are equal.
Proof: ABCD is a parallelogram.
$A B \| C D$ and $A C$ is transversal
$x=p($ Alternate interior angles $)$
$B C \| A D$ and $A C$ is transversal
$y=q$ (Alternate interior angles)
$x+y=p+q$
$\angle B A D=\angle B C D \Rightarrow \angle A=\angle C$

Similarly $\angle B=\angle D$
Theorem 8.5 : If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.
Proof: In quadrilateral $\mathrm{ABCD}, \angle A=\angle C$ and $\angle B=\angle D$
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$ (Sum of angles in quadrilateral)
$\angle A+\angle D+\angle A+\angle D=360^{\circ}$
$2(\angle A+\angle D)=360^{\circ}$
$\angle A+\angle D=180^{\circ}$

Co interior angles are supplementary
$\Rightarrow A B \| D C$
Similarly $B C \| A D$
$\therefore \mathrm{ABCD}$ is a parallelogram.
Theorem 8.6 : The diagonals of a parallelogram bisect each other.
Proof: In parallelogram ABCD diagonals AC, BD intersect at 0
$\triangle A O D=\triangle C O B($ ASA rule $)$
$A O=C O$ and $O D=O B(C P C T)$

$\Rightarrow O$ is mid point of $A C$ and $B D$
$\Rightarrow A C$ and $B D$ are bisect each other
Theorem 8.7 : If the diagonals of a quadrilateral bisect each other, then it is a parallelogram
Proof: ABCD is a quadrilateral. The diagonals AC and BD bisect at 0
In $\triangle A O B, \Delta C O D$
$O A=O C$ and $O B=O D$ (given)
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (vertically opposite angles)

$\Delta \mathrm{AOB} \cong \triangle \mathrm{COD}$ (SAS congruence rule)
$\therefore \angle \mathrm{ABO}=\angle \mathrm{CDO}(\mathrm{By} \mathrm{CPCT})$
Alternate interior angles are equal
$\therefore \mathrm{AB} \| \mathrm{CD}$
Similarly BC || AD
Therefore ABCD is a parallelogram.

Example 1 : Show that each angle of a rectangle is a right angle.

Sol: Rectangle is a parallelogram in which one angle is a right angle.
ABCD is a rectangle. Let one angle is $\angle \mathrm{A}=90^{\circ}$

We have, $\mathrm{AD}|\mid \mathrm{BC}$ and AB is a transversal.
$\angle A+\angle B=180^{\circ}$ (Interior angles on the same side of the transversal)
$90^{\circ}+\angle B=180^{\circ}$
$\angle B=180^{\circ}-90^{\circ}=90^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{A}$ and $\angle \mathrm{D}=\angle \mathrm{B}$ (Opposite angles of the parallelogram)
$\angle \mathrm{C}=90^{\circ}$ and $\angle \mathrm{D}=90^{\circ}$
Therefore, each of the angles of a rectangle is a right angle.
Example 2 : Show that the diagonals of a rhombus are perpendicular to each other.
Sol: Let ABCD is a rhombus.
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (All sides are equal in rhombus)
In \triangle AOD and Δ COD
$\mathrm{OA}=\mathrm{OC}$ (Diagonals of a parallelogram bisect each other)

OD $=0 \mathrm{D}$ (Common)
$\mathrm{AD}=\mathrm{CD}$ (given)
$\Delta \mathrm{AOD} \cong \Delta \mathrm{COD}$ (SSS congruence rule)
$\angle \mathrm{AOD}=\angle \mathrm{COD}(\mathrm{CPCT})$
But, $\angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ}$ (Linear pair)
$2 \angle \mathrm{AOD}=180^{\circ}$
$\angle \mathrm{AOD}=90^{\circ}$

So, the diagonals of a rhombus are perpendicular to each other.
Example 3 : ABC is an isosceles triangle in which $\mathrm{AB}=\mathrm{AC}$. AD bisects exterior angle PAC and $\mathrm{CD} \| \mathrm{AB}$ (see Fig. 8.8). Show that (i) $\angle \mathrm{DAC}=\angle \mathrm{BCA}$ and (ii) ABCD is a parallelogram.

Sol: (i) $\Delta \mathrm{ABC}$ is isosceles in which $\mathrm{AB}=\mathrm{AC}$ (Given)
So, $\angle \mathrm{ABC}=\angle \mathrm{ACB}$ (Angles opposite to equal sides)
Also, $\angle \mathrm{PAC}=\angle \mathrm{ABC}+\angle \mathrm{ACB}$ (Exterior angle of a triangle)
or, $\angle \mathrm{PAC}=2 \angle \mathrm{ACB} \rightarrow(1)$
Now, AD bisects $\angle P A C$.
So, $\angle \mathrm{PAC}=2 \angle \mathrm{DAC} \rightarrow(2)$
$2 \angle \mathrm{DAC}=2 \angle \mathrm{ACB}$ [From (1) and (2)]
$\angle \mathrm{DAC}=\angle \mathrm{BCA}$
(ii) $\angle \mathrm{DAC}=\angle \mathrm{ACB}$ i.e alternate interior angles are equal.
$\Rightarrow \mathrm{BC} \| \mathrm{AD}$
Also, BA || CD (Given)
Now, both pairs of opposite sides of quadrilateral ABCD are parallel.
So, ABCD is a parallelogram.
Example 4 : Two parallel lines 1 and m are intersected by a transversal p (see Fig. 8.9). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Sol: PS || QR and transversal p intersects them at points A and C .
The bisectors of $\angle \mathrm{PAC}$ and $\angle \mathrm{ACQ}$ intersect at B and bisectors of $\angle \mathrm{ACR}$ and $\angle \mathrm{SAC}$ intersect at D .

Now, $\angle \mathrm{PAC}=\angle \mathrm{ACR}$ (Alternate angles as $l \| m$ and p is a transversal)
$\frac{1}{2} \angle P A C=\frac{1}{2} \angle A C R$

i.e., $\angle \mathrm{BAC}=\angle \mathrm{ACD} \Rightarrow$ alternate interior angles are equal.
$A B \| D C$
Similarly, $\mathrm{BC}|\mid \mathrm{AD}$ (Considering $\angle \mathrm{ACB}$ and $\angle \mathrm{CAD}$)
Therefore, quadrilateral ABCD is a parallelogram.
$\angle \mathrm{PAC}+\angle \mathrm{CAS}=180^{\circ}$ (Linear pair)
$\frac{1}{2} \angle P A C+\frac{1}{2} \angle C A S=\frac{1}{2} \times 180^{\circ}=90^{\circ}$
$\angle \mathrm{BAC}+\angle \mathrm{CAD}=90^{\circ}$
$\angle \mathrm{BAD}=90^{\circ}$
So, ABCD is a parallelogram in which one angle is 90°.
Therefore, $A B C D$ is a rectangle.
Example 5 : Show that the bisectors of angles of a parallelogram form a rectangle.
Sol : Let P, Q, R and S be the points of intersection of the bisectors of
$\angle \mathrm{A}$ and $\angle \mathrm{B}, \angle \mathrm{B}$ and $\angle \mathrm{C}, \angle \mathrm{C}$ and $\angle \mathrm{D}$, and $\angle \mathrm{D}$ and $\angle \mathrm{A}$ of parallelogram ABCD In $\triangle \mathrm{ASD}, \mathrm{DS}$ bisects $\angle \mathrm{D}$ and AS bisects $\angle \mathrm{A}$

$$
\begin{aligned}
\therefore \angle D A S & +\angle A D S=\frac{1}{2} \angle A+\frac{1}{2} \angle D=\frac{1}{2}(\angle \mathrm{~A}+\angle \mathrm{D}) \\
& =\frac{1}{2} \times 180^{\circ}(\angle \mathrm{A} \text { and } \angle \mathrm{D} \text { are adjacent angles of parallelogram } \mathrm{ABCD}) \\
& =90^{\circ}
\end{aligned}
$$

Also, $\angle \mathrm{DAS}+\angle \mathrm{ADS}+\angle \mathrm{DSA}=180^{\circ}$ (Angle sum property of a triangle)
$90^{\circ}+\angle \mathrm{DSA}=180^{\circ}$
$\angle \mathrm{DSA}=90^{\circ}$
$\angle \mathrm{PSR}=90^{\circ}$ (Being vertically opposite to $\angle \mathrm{DSA}$)
Similarly $\angle \mathrm{SPQ}=90^{\circ}, \angle \mathrm{PQR}=90^{\circ}$ and $\angle \mathrm{SRQ}=90^{\circ}$
So, PQRS is a quadrilateral in which all angles are right angles.
So, $P Q R S$ is a rectangle.

EXERCISE 8.1

1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Sol: ABCD is a parallelogram and diagonals $\mathrm{AC}=\mathrm{BD}$
$\triangle A B C \cong \triangle D C B(S S S$ congruence rule $)$
$\angle A B C=\angle D C B(C P C T)$

$\angle A B C+\angle D C B=180^{\circ}$ (co-interior angles are supplementary)
$\angle A B C+\angle A B C=180^{\circ}$
$2 \angle A B C=180^{\circ}$
$\angle A B C=90^{\circ}$
ABCD is a parallelogram and one of the angles is 90°
ABCD is a rectangle.
2. How that the diagonals of a square are equal and bisect each other at right angles.

Sol: Let ABCD is square.
$\triangle A B C \cong \triangle D C B($ SAS rule $)$
$A C=B D(B y C P C T) \Rightarrow$ Diagonals are equal
$\triangle A O B \cong \triangle C O D(A S A$ congruence rule $)$
$\therefore A O=C O$ and $O B=O D($ by CPCT)
\Rightarrow Diogonals are bisect each other
$\triangle A O B \cong \triangle C O B(S S S$ congruence rule $)$
$\angle A O B=\angle C O B($ by $C P C T)$
But $\angle A O B+\angle C O B=180^{\circ}$ (Linear pair)
$\angle A O B+\angle A O B=180^{\circ}$
$2 \angle A O B=180^{\circ}$
$\angle A O B=90^{\circ}$
Diagonals are bisect each other at right angles.
3. Diagonal AC of a parallelogram ABCD bisects $\angle \mathrm{A}$ Show that (i) it bisects $\angle \mathrm{C}$ also, (ii) ABCD is a rhombus.

Sol: (i) $\angle \mathrm{BAC}=\angle \mathrm{DAC}(\mathrm{AC}$ bisects $\angle \mathrm{A}) \rightarrow(1)$
$\angle \mathrm{BAC}=\angle \mathrm{DCA}$ (Alternate interior angles) $\rightarrow(2)$
$\angle \mathrm{DAC}=\angle \mathrm{BCA}$ (Alternate interior angles) $\rightarrow(3)$
From (1),(2),(3)
$\angle \mathrm{DCA}=\angle \mathrm{BCA}$

Hence AC bisects $\angle \mathrm{C}$ also.
(ii) In $\triangle B A C$
$\angle \mathrm{BAC}=\angle \mathrm{BCA}$ (From (1),(2),(3))
$\mathrm{AB}=\mathrm{BC}$ (opposite sides of equal angles are equal) $\rightarrow(4)$
But $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{BC}=\mathrm{AD}$ (Opposite sides of parallelogram) $\rightarrow(5)$

From (4),(5)
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, ABCD is a rhombus.
4. ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that: (i) ABCD is a square (ii) diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Sol: ABCD is a rectangle
Diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$
$\angle B A C=\angle D A C=\frac{1}{2} \angle A$ and $\angle B C A=\angle D C A=\frac{1}{2} \angle C$
But $\angle A=\angle C \Rightarrow \frac{1}{2} \angle A=\frac{1}{2} \angle C$
$\Rightarrow \angle B A C=\angle B C A$

A
$\Rightarrow A B=B C($ Sides opposite to equal angles are equal $)$
But $A B=D C$ and $B C=D A$ (opposite sides of a rectangle are equal)
$\therefore A B=B C=C D=D A$
$\therefore \mathrm{ABCD}$ is a square.
(ii) In $\triangle \mathrm{BCD}, \mathrm{BC}=\mathrm{CD}$ (ABCD is a square)
$\angle C B D=\angle C D B($ Angles opposite to equal sides are equal)
But $\angle C B D=\angle A D B$ and $\angle C D B=\angle A B D$ (alternate interior angles)
$\therefore \angle C B D=\angle A B D$ and $\angle C D B=\angle A D B$
BD bisects $\angle \mathrm{D}$ and $\angle \mathrm{B}$.
5. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see Fig. 8.12). Show that:
(i) $\Delta \mathrm{APD} \cong \triangle \mathrm{CQB}$ (ii) $\mathrm{AP}=\mathrm{CQ}$ (iii) $\Delta \mathrm{AQB} \cong \triangle \mathrm{CPD}$ (iv) $\mathrm{AQ}=\mathrm{CP}$ (v) APCQ is a parallelogram.

Sol: (i) In $\triangle A P D$ and $\triangle C Q B$
$\angle \mathrm{ADP}=\angle \mathrm{CBQ}$ (Alternate interior angles)
$\mathrm{AD}=\mathrm{BC}$ (Opposite sides of a parallelogram are equal)
$\mathrm{DP}=\mathrm{BQ}$ (Given)
$\Delta \mathrm{APD} \cong \Delta \mathrm{CQB}$ (SAS congruence rule)

(ii) $\Delta \mathrm{APD} \cong \Delta \mathrm{CQB}($ From (i) $)$
$\therefore \mathrm{AP}=\mathrm{CQ}(\mathrm{CPCT})$
(iii) In $\triangle A Q B$ and $\triangle C P D$
$\angle \mathrm{ABQ}=\angle \mathrm{CDP}$ (Alternate interior angles)
$\mathrm{AB}=\mathrm{CD}$ (Opposites of a parallelogram are equal)
$B Q=D P$ (Given)
$\Delta \mathrm{AQB} \cong \triangle \mathrm{CPD}$ (SAS congruence rule)
(iv) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}($ From (iii) $)$
$\therefore \mathrm{AQ}=\mathrm{CP}(\mathrm{CPCT})$
(v) In quadrilateral APCQ
$\mathrm{AP}=\mathrm{CQ}$ and $\mathrm{AQ}=\mathrm{CP}$
Hence APCQ is a parallelogram.
6. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal $B D$ (see Fig. 8.13). Show that (i) $\Delta A P B \cong \triangle C Q D$ (ii) $A P=C Q$

Sol: (i) In $\triangle A P B$ and $\triangle C Q D$
$\angle \mathrm{APB}=\angle \mathrm{CQD}=90^{\circ}$
$A B=C D$ (opposite sides of parallelogram are equal)

$\angle \mathrm{ABD}=\angle \mathrm{CDQ}(\mathrm{AB} \| \mathrm{CD}$, alternate interior angles)
$\therefore \triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$ (AAS congruence rule)
(ii) $\Delta \mathrm{APB} \cong \Delta \mathrm{CQD}($ from (i) $)$
$\therefore \mathrm{AP}=\mathrm{CQ}(\mathrm{CPCT})$
7. $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see Fig. 8.14). Show that (i) $\angle A=\angle B$ (ii) $\angle C$ $=\angle D$ (iii) $\Delta A B C \cong \triangle \mathrm{BAD}$ (iv) diagonal $\mathrm{AC}=$ diagonal BD
[Hint: Extend $A B$ and draw a line through C parallel to $D A$ intersecting $A B$ produced at E.]
Sol: Draw AE ||DC and CE||DA
ADCE is a parallelogram
$\mathrm{AD}=\mathrm{CE}$ (opposite sides of ADCE)
$\mathrm{AD}=\mathrm{BC}$ (given)

$\therefore \mathrm{BC}=\mathrm{CE}$
$\angle \mathrm{CEB}=\angle \mathrm{CBE}$ (equal sides opposite angles are equal)
$\angle \mathrm{A}+\angle \mathrm{CEB}=180^{\circ}$ (co-interior angles are supplementary)
$\angle \mathrm{A}+\angle \mathrm{CBE}=180^{\circ}(\angle \mathrm{CEB}=\angle \mathrm{CBE}) \rightarrow(1)$
$\angle \mathrm{B}+\angle \mathrm{CBE}=180^{\circ}$ (Linear pair) $\rightarrow(2)$
From (1) and (2)
$\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$ (co-interior angles) $\rightarrow(3)$
$\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (co-interior angles) \rightarrow (4)
From (3) and (4)
$\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{A}+\angle \mathrm{D}$
But $\angle \mathrm{A}=\angle \mathrm{B}$
$\therefore \angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\operatorname{In} \triangle A B C$ and $\triangle B A D$,

$\mathrm{BC}=\mathrm{AD}$ (given)
$\mathrm{AB}=\mathrm{BA}$ (common side)
$\angle \mathrm{B}=\angle \mathrm{A}$ (From (i))
$\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}($ SAS congruence rule $)$
(iv) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}($ from (iii))
$\therefore \mathrm{AC}=\mathrm{BD}$ (by CPCT)

The Mid-point Theorem

Theorem 8.8 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side.

Proof: In $\triangle A B C, E$ and F are mid-points of $A B$ and $A C$ respectively and draw $C D$ || $B A$.
In $\triangle \mathrm{AEF}, \triangle \mathrm{CDF}$
$\angle A E F=\angle C D F$ (Alternate interior angles)
$\angle E A F=\angle F C D($ Alternate interior angles)

$A F=F C(F$ is mid point of $A C)$
$\triangle A E F \cong \triangle C D F(A S A$ rule $)$
$E F=D F$ and $B E=A E=D C(C P C T)$
$\therefore \mathrm{BCDE}$ is a parallelogram. So, $\mathrm{EF} \| \mathrm{BC}$
Theorem 8.9 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

Proof: In $\triangle A B C, E$ is midpoint of $A B$.
Draw a line l passing through E and parallel to $B C$. The line intersects AC at F .
Construct CD || BA
EB || DC and ED || BC
$\Rightarrow E B C D$ is a parallelogram.
$B E=D C$ (opposite sides of parallelogram)
But $\mathrm{BE}=\mathrm{AE}$ (E is midpoint of AB)
$\therefore \mathrm{AE}=\mathrm{CD} \rightarrow(1)$

In $\triangle \mathrm{AFE}$ and $\triangle \mathrm{CFD}$
$\angle \mathrm{EAF}=\angle \mathrm{DCF}$ ($\mathrm{BA}|\mid \mathrm{CD}$ and AC is transversal, alternate interior angles)
$\angle \mathrm{AEF}=\angle \mathrm{CDF}$ ($\mathrm{BA}|\mid \mathrm{CD}$ and ED is transversal, alternate interior angles)
$\mathrm{AE}=\mathrm{CD}($ (from (1))
$\Delta \mathrm{AFE} \cong \Delta \mathrm{CFD}$ (ASA congruence rule)
$\therefore \mathrm{AF}=\mathrm{CF}(\mathrm{CPCT})$
$\Rightarrow l$ bisects AC.
Example 6 : In $\triangle A B C, D, E$ and F are respectively the mid-points of sides $A B, B C$ and $C A$ (see Fig. 8.18). Show that $\triangle A B C$ is divided into four congruent triangles by joining D, E and F.

Solution: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side.

DE || AC , DF || BC and EF || AB
Therefore ADEF, BDFE and DFCE are all parallelograms.
Now DE is a diagonal of the parallelogram BDFE,

Therefore, $\triangle \mathrm{BDE} \cong \Delta \mathrm{FED}$
Similarly $\triangle \mathrm{DAF} \cong \triangle \mathrm{FED}$ and $\triangle \mathrm{EFC} \cong \triangle \mathrm{FED}$
So, all the four triangles are congruent

Example $7: 1, m$ and n are three parallel lines intersected by transversals p and q such that $1, m$ and n cut off equal intercepts $A B$ and $B C$ on p (see Fig. 8.19). Show that l, m and n cut off equal intercepts $D E$ and EF on q also.

Sol: Let us join A to Fintersecting m at G .
The trapezium ACFD is divided into two triangles; namely $\triangle \mathrm{ACF}$ and $\triangle \mathrm{AFD}$.

In $\triangle A C F$, it is given that B is the mid-point of $A C(A B=B C)$
 and $B G|\mid C F($ since $m \mid n)$.

So, G is the mid-point of AF .
Now, in $\triangle A F D$, we can apply the same argument as G is the mid-point of $A F, G E \| A D$, so E is the mid-point of DF,
i.e., $\mathrm{DE}=\mathrm{EF}$
$\Rightarrow l, m$ and n cut off equal intercepts on q also.

EXERCISE 8.2

1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A . A C$ is a diagonal. Show that:
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
(ii) $P Q=S R$
(iii) $P Q R S$ is a parallelogram.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.
(i) In $\triangle A B C, P$ and Q are midpoints of $A B$ and $B C$.

$P Q \| A C$ and $P Q=\frac{1}{2} A C \rightarrow(1)$
(ii) In $\triangle A D C, S$ and R are midpoints of $D A$ and $D C$.
$P Q \| A C$ and $P Q=\frac{1}{2} A C \rightarrow(2)$
From (1) and (2)
$P Q=S R$
(iii) From (1) and (2)
$S R \| A C$ and $P Q \| A C$
$\Rightarrow P Q \| S R$ also $P Q=S R$
$\therefore \mathrm{PQRS}$ is a parallelogram.
2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In $\triangle A B C, P$ and Q are midpoints of $A B$ and $B C$.
$P Q \| A C$ and $P Q=\frac{1}{2} \mathrm{AC} \rightarrow(1)$
In $\triangle A D C, S$ and R are midpoints of $A D$ and $D C$.
$S R \| A C$ and $S R=\frac{1}{2} A C \rightarrow(2)$
From (1)and (2) : PQ \| $S R$ and $P Q=S R$

Similarly : $P S \| Q R$ and $P S=Q R$
$\therefore \mathrm{PQRS}$ is a parallelogram.
MO || PN and PM || NO
PMON also a parallelogram.
$\angle \mathrm{MPN}=\angle \mathrm{MON}$ (opposite angles in a parallelogram)
But $\angle \mathrm{MON}=90^{\circ}$ (Diagonals of a rhombus perpendicular to each other)
$\therefore \angle \mathrm{MPN}=90^{\circ}$
In parallelogram $P Q R S$ one angle is 90°
So, $P Q R S$ is a rectangle.
3. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rhombus.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In $\triangle A B C, P$ and Q are midpoints of $A B$ and $B C$.

$P Q \| A C$ and $P Q=\frac{1}{2} \mathrm{AC} \rightarrow(1)$
In $\triangle A D C, S$ and R are midpoints of $A D$ and $D C$.
$\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC} \rightarrow(2)$
From (1) and (2) : PQ \| SR and $P Q=S R=\frac{1}{2} \mathrm{AC}$
Similarly : $\mathrm{PS} \| \mathrm{QR}$ and $\mathrm{PS}=\mathrm{QR}=\frac{1}{2} \mathrm{BD}$

Also, $\mathrm{AC}=\mathrm{BD}$ (Diagonals of a rectangle $A C, B D$ are equal $)$
$\therefore \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$
So, PQRS is a rhombus.
4. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D . A$ line is drawn through E parallel to $A B$ intersecting $B C$ at F (see Fig. 8.21). Show that F is the mid-point of BC.

Sol: We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

In $\triangle A B D, E O \| A B$ and E is mid point of $A D$

$\Rightarrow O$ is mid point of $B D$
In $\triangle C B D, O F \| C D$ and O is mid point of $B D$
$\Rightarrow F$ is mid point of $B C$
5. In a parallelogram $\mathrm{ABCD}, \mathrm{E}$ and F are the mid-points of sides AB and CD respectively (see Fig. 8.22). Show that the line segments AF and EC trisect the diagonal BD.

Sol: E and F are the mid-points of sides AB and CD
$D F=F C=\frac{1}{2} D C$ and $A E=E B=\frac{1}{2} A B$
$A B \| D C$ and $A B=C D(A B C D$ is a parallelogram $)$
$\Rightarrow A E \| F C$ and $\frac{1}{2} A B=\frac{1}{2} C D$
$\Rightarrow A E \| F C$ and $A E=F C$
\therefore AEFC is a parallelogram.
$\Rightarrow A F \| E C$
In $\triangle A B P, E Q \| A P$ and E is midpoint of $A B$.
$\Rightarrow Q$ is midpoint of $B P$
$\Rightarrow B Q=Q P \rightarrow(1)$
In $\triangle D Q C, F P \| C Q$ and F is midpoint of $D C$.
$\Rightarrow P$ is midpoint of $D Q$
$\Rightarrow \mathrm{QP}=\mathrm{PD} \rightarrow(2)$
From (1) and (2)

$$
\mathrm{BQ}=\mathrm{QP}=\mathrm{PD}
$$

\therefore The line segments AF and EC trisect the diagonal BD.
6. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects $A C$ at D. Show that (i) D is the mid-point of $A C$ (ii) MD $\perp A C$
(iii) $\mathbf{C M}=M A=\frac{1}{2} A B$

Sol: We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.
(i) In $\triangle A B C, M D \| B C$ and M is midpoint of $A B$
$\Rightarrow D$ is midpoint of $A C$.
(ii) $M D \| B C$ and $A C$ is transversal
$\angle M D C+\angle B C D$
$=180^{\circ}$ (Co

- interior angles are supplementary)
$\angle M D C+90^{\circ}=180^{\circ}$
$\angle M D C=180^{\circ}-90^{\circ}=90^{\circ}$
$\therefore M D \perp A C$
(iii) In $\triangle A M D$ and $\triangle C M D$
$\mathrm{AD}=\mathrm{DC}(\mathrm{D}$ is midpoint of AC$)$

$\angle A D M=\angle C D M\left(=90^{\circ}\right)$
$M D=M D$ (Common)
$\triangle A M D \cong \triangle C M D(S A S$ congruence rule $)$
$A M=C M(B y C P C T)$
But $A M=\frac{1}{2} A B(M$ is mid point of $A B)$
$\therefore C M=M A=\frac{1}{2} A B$

