

Theorem 8.1 : A diagonal of a parallelogram divides it into two congruent triangles.

Proof : Let ABCD be a parallelogram and AC be a diagonal

In Δ ABC and Δ CDA,

BC || AD and AC is a transversal.

 \angle BCA = \angle DAC (Pair of alternate angles)

AB || DC and AC is a transversal.

 \angle BAC = \angle DCA (Pair of alternate angles)

AC = CA (Common)

 $\Delta ABC \cong \Delta CDA (ASA rule)$

Diagonal AC divides parallelogram ABCD into two congruent triangles ABC and CDA.

Theorem 8.2 : In a parallelogram, opposite sides are equal.

Proof: Let ABCD be a parallelogram and AC be a diagonal.

 $\Delta ABC \cong \Delta CDA (ASA rule)$

So, AB = DC and BC = AD (CPCT)

Theorem 8.3 : If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.

Proof: ABCD be a quadrilateral and AB = DC and BC = AD

In Δ ABC and Δ CDA

AB = DC (given)

BC = AD(given)

AC=AC (common)

 Δ ABC \cong Δ CDA (SSS congruence rule)

 \angle BAC = \angle DCA(CPCT)

Alternate interior angles are equal \Rightarrow AB || CD

Similarly BC || DA

Each pair of opposite sides are parallel.

ABCD is a parallelogram.

Theorem 8.4 : In a parallelogram, opposite angles are equal.

Proof: ABCD is a parallelogram.

 $\Delta AOB \cong \Delta COD$ (SAS congruence rule)

 $\therefore \angle ABO = \angle CDO$ (By CPCT)

Alternate interior angles are equal

∴ AB || CD

Similarly BC || AD

Therefore ABCD is a parallelogram.

Example 1 : Show that each angle of a rectangle is a right angle.

Sol: Rectangle is a parallelogram in which one angle is a right angle.

ABCD is a rectangle. Let one angle is $\angle A = 90^{\circ}$

We have, AD || BC and AB is a transversal.

 $\angle A + \angle B = 180^{\circ}$ (Interior angles on the same side of the transversal)

 $90^{0} + \angle B = 180^{\circ}$

 $\angle B = 180^{\circ} - 90^{\circ} = 90^{\circ}$

 $\angle C = \angle A$ and $\angle D = \angle B$ (Opposite angles of the parallelogram)

 $\angle C = 90^{\circ} \text{ and } \angle D = 90^{\circ}$

Therefore, each of the angles of a rectangle is a right angle.

Example 2 : Show that the diagonals of a rhombus are perpendicular to each other.

Sol: Let ABCD is a rhombus.

AB = BC = CD = DA (All sides are equal in rhombus)

In Δ AOD and Δ COD

OA = OC (Diagonals of a parallelogram bisect each other)

OD = OD (Common)

AD = CD (given)

 $\Delta \text{ AOD} \cong \Delta \text{ COD}$ (SSS congruence rule)

 $\angle AOD = \angle COD (CPCT)$

But, $\angle AOD + \angle COD = 180^{\circ}$ (Linear pair)

 $2\angle AOD = 180^{\circ}$

 $\angle AOD = 90^{\circ}$

D

So, the diagonals of a rhombus are perpendicular to each other.

Example 3 : ABC is an isosceles triangle in which AB = AC. AD bisects exterior angle PAC and CD || AB (see Fig. 8.8). Show that (i) \angle DAC = \angle BCA and (ii) ABCD is a parallelogram.

Sol: (i) \triangle ABC is isosceles in which AB = AC (Given)

So, \angle ABC = \angle ACB (Angles opposite to equal sides)

Also, $\angle PAC = \angle ABC + \angle ACB$ (Exterior angle of a triangle)

or, $\angle PAC = 2 \angle ACB \rightarrow (1)$

Now, AD bisects \angle PAC.

So, $\angle PAC = 2 \angle DAC \rightarrow (2)$

 $2 \angle DAC = 2 \angle ACB$ [From (1) and (2)]

 \angle DAC = \angle BCA

(ii) \angle DAC = \angle ACB i.e alternate interior angles are equal.

 \Rightarrow BC ||AD

Also, BA || CD (Given)

Now, both pairs of opposite sides of quadrilateral ABCD are parallel.

So, ABCD is a parallelogram.

Example 4 : Two parallel lines I and m are intersected by a transversal p (see Fig. 8.9). Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.

Sol: PS || QR and transversal p intersects them at points A and C.

The bisectors of \angle PAC and \angle ACQ intersect at B and bisectors of \angle ACR and \angle SAC intersect at D.

Now, $\angle PAC = \angle ACR$ (Alternate angles as $l \parallel m$ and p is a transversal)

$$\frac{1}{2} \angle PAC = \frac{1}{2} \angle ACR$$

i.e., \angle BAC = \angle ACD \Rightarrow alternate interior angles are equal.

AB || DC

Similarly, BC || AD (Considering \angle ACB and \angle CAD)

Therefore, quadrilateral ABCD is a parallelogram.

 \angle PAC + \angle CAS = 180° (Linear pair)

D

$$\frac{1}{2} \angle PAC + \frac{1}{2} \angle CAS = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

$$\angle BAC + \angle CAD = 90^{\circ}$$

$$\angle BAD = 90^{\circ}$$
So, ABCD is a parallelogram in which one angle is 90°.
Therefore, ABCD is a rectangle.
Example 5 : Show that the bisectors of angles of a parallelogram form a rectangle.
Sol : Let P, Q, R and S be the points of intersection of the bisectors of

$$\angle A \text{ and } \angle B, \angle B \text{ and } \angle C, \angle C \text{ and } \angle D, \text{ and } \angle D \text{ and } \angle A \text{ of}$$
parallelogram ABCD In $\triangle ASD$, DS bisects $\angle D$ and $\triangle A$ bisects $\angle A$

$$\therefore \angle DAS + \angle ADS = \frac{1}{2} \angle A + \frac{1}{2} \angle D = \frac{1}{2} (\angle A + \angle D)$$

$$= \frac{1}{2} \times 180^{\circ} (\angle A \text{ and } \angle D \text{ are adjacent angles of parallelogram ABCD})$$

$$= 90^{\circ}$$
Also, $\angle DAS + \angle ADS + \angle DSA = 180^{\circ}$ (Angle sum property of a triangle)
 $90^{\circ} + \angle DSA = 180^{\circ}$
 $\angle DSA = 90^{\circ}$
 $\angle PSR = 90^{\circ}$ (Being vertically opposite to $\angle DSA$)
Similarly $\angle SPQ = 90^{\circ}, \angle PQR = 90^{\circ}$ and $\angle SRQ = 90^{\circ}$
So, PQRS is a quadrilateral in which all angles are right angles.
So, PQRS is a rectangle.
EXERCISE 8.1
1. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Sol: ABCD is a parallelogram and diagonals AC=BD
 $\triangle ABC \cong \triangle DCB (SSS congruence rule)$
 $\angle ABC = \angle DCB (CPCT)$
 $\angle ABC + \angle DCB = 180^{\circ} (co - interior angles are supplementary)$

 $\angle ABC + \angle ABC = 180^{\circ}$

 $2 \angle ABC = 180^{\circ}$

 $\angle ABC = 90^{\circ}$

ABCD is a parallelogram and one of the angles is 90°

ABCD is a rectangle.

2. How that the diagonals of a square are equal and bisect each other at right angles.

D

С

B

B

Π

Sol: Let ABCD is square.

 $\Delta ABC \cong \Delta DCB(SAS rule)$

 $AC = BD (By CPCT) \Rightarrow Diagonals are equal$

 $\Delta AOB \cong \Delta COD$ (ASA congruence rule)

 $\therefore AO = CO \text{ and } OB = OD \text{ (by CPCT)}$

 \Rightarrow Diogonals are bisect each other

 $\Delta AOB \cong \Delta COB$ (SSS congruence rule)

 $\angle AOB = \angle COB (by CPCT)$

 $But \angle AOB + \angle COB = 180^{\circ}$ (Linear pair)

 $\angle AOB + \angle AOB = 180^{\circ}$

 $2 \angle AOB = 180^{\circ}$

 $\angle AOB = 90^{\circ}$

Diagonals are bisect each other at right angles.

- 3. Diagonal AC of a parallelogram ABCD bisects ∠ A Show that (i) it bisects ∠ C also, (ii) ABCD is a rhombus.
- Sol: (i) \angle BAC= \angle DAC (AC bisects \angle A) \rightarrow (1)

 \angle BAC= \angle DCA (Alternate interior angles) \rightarrow (2)

 $\angle DAC = \angle BCA$ (Alternate interior angles) \rightarrow (3)

From (1),(2),(3)

∠DCA=∠BCA

Hence AC bisects \angle C also.

(ii) In $\triangle BAC$

 $\angle BAC = \angle BCA (From (1), (2), (3))$

AB=BC (opposite sides of equal angles are equal) \rightarrow (4)

But AB=DC and BC=AD (Opposite sides of parallelogram) \rightarrow (5)

From (4),(5)

AB = BC = CD = DA

Hence, ABCD is a rhombus.

4. ABCD is a rectangle in which diagonal AC bisects ∠ A as well as ∠ C. Show that: (i) ABCD is a square (ii) diagonal BD bisects ∠ B as well as ∠ D.

Г

В

Diagonal AC bisects $\angle A$ as well as $\angle C$

$$\angle BAC = \angle DAC = \frac{1}{2} \angle A \text{ and } \angle BCA = \angle DCA = \frac{1}{2} \angle C$$

But
$$\angle A = \angle C \Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$

 $\Rightarrow \angle BAC = \angle BCA$

 $\Rightarrow AB = BC$ (Sides opposite to equal angles are equal)

But AB = DC and BC = DA (opposite sides of a rectangle are equal)

$$\therefore AB = BC = CD = DA$$

: ABCD is a square.

(ii) In \triangle BCD, BC=CD (ABCD is a square)

 $\angle CBD = \angle CDB$ (Angles opposite to equal sides are equal)

But $\angle CBD = \angle ADB$ and $\angle CDB = \angle ABD$ (alternate interior angles)

 $\therefore \angle CBD = \angle ABD$ and $\angle CDB = \angle ADB$

BD bisects $\angle D$ and $\angle B$.

5. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:

(i) \triangle APD \cong \triangle CQB (ii) AP = CQ (iii) \triangle AQB \cong \triangle CPD (iv) AQ = CP (v) APCQ is a parallelogram.

Sol: (i) In
$$\triangle$$
APD and \triangle CQB

 $\angle ADP = \angle CBQ$ (Alternate interior angles)

AD=BC (Opposite sides of a parallelogram are equal)

DP=BQ (Given)

 Δ APD $\cong \Delta$ CQB (SAS congruence rule)

(ii) \triangle APD $\cong \triangle$ CQB (From (i))

 $\therefore AP = CQ (CPCT)$

(iii) In $\triangle AQB$ and $\triangle CPD$

 $\angle ABQ = \angle CDP$ (Alternate interior angles)

AB=CD (Opposites of a parallelogram are equal)

BQ=DP (Given)

 $\triangle AQB \cong \triangle CPD$ (SAS congruence rule)

(iv) $\triangle AQB \cong \triangle CPD$ (From (iii))

 $\therefore AQ = CP (CPCT)$

(v) In quadrilateral APCQ

AP=CQ and AQ=CP

Hence APCQ is a parallelogram.

6. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.13). Show that (i) \triangle APB \cong \triangle CQD (ii) AP = CQ

Sol: (i) In \triangle APB and \triangle CQD

∠APB=∠CQD=90⁰

AB=CD (opposite sides of parallelogram are equal)

 $\angle ABD = \angle CDQ$ (AB||CD, alternate interior angles)

 $\therefore \Delta APB \cong \Delta CQD$ (AAS congruence rule)

(ii) \triangle APB \cong \triangle CQD (from (i))

 $\therefore AP = CQ (CPCT)$

7. ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that (i) $\angle A = \angle B$ (ii) $\angle C$ $= \angle D$ (iii) $\triangle ABC \cong \triangle BAD$ (iv) diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Sol: Draw AE ||DC and CE||DA

ADCE is a parallelogram

AD=CE (opposite sides of ADCE)

AD = BC (given)

 \therefore BC=CE

 $\angle CEB = \angle CBE$ (equal sides opposite angles are equal)

D	(
P	.1
12	1
12	< /1
17	NI I
12	221
^N ^V	

Page 9

 $\angle A + \angle CEB = 180^{\circ}$ (co-interior angles are supplementary) $\angle A + \angle CBE = 180^{\circ} (\angle CEB = \angle CBE) \rightarrow (1)$ $\angle B + \angle CBE = 180^{\circ}$ (Linear pair) \rightarrow (2) From (1) and (2) $\angle A = \angle B$ (ii) $\angle A + \angle D = 180^{\circ}$ (co-interior angles) \rightarrow (3) $\angle B + \angle C = 180^{\circ}$ (co-interior angles) \rightarrow (4) From (3) and (4) R $\angle B + \angle C = \angle A + \angle D$ But $\angle A = \angle B$ $\therefore \angle C = \angle D$ (iii) In \triangle ABC and \triangle BAD, BC=AD (given) AB=BA (common side) $\angle B = \angle A$ (From (i)) $\triangle ABC \cong \triangle BAD$ (SAS congruence rule (iv) $\triangle ABC \cong \triangle BAD$ (from (iii)) \therefore AC=BD (by CPCT) **The Mid-point Theorem** Theorem 8.8 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side. **Proof:** In \triangle ABC, E and F are mid-points of AB and AC respectively and draw CD || BA.

In $\triangle AEF$, $\triangle CDF$ $\angle AEF = \angle CDF$ (Alternate interior angles) $\angle EAF = \angle FCD$ (Alternate interior angles) AF = FC (F is mid point of AC) $\triangle AEF \cong \triangle CDF$ (ASA rule) EF = DF and BE = AE = DC (CPCT)

∴ BCDE is a parallelogram. So, EF || BC

Theorem 8.9 : The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

Proof: In $\triangle ABC$, E is midpoint of AB.

Draw a line *l* passing through E and parallel to *BC*. The line intersects AC at F.

Construct CD || BA

EB || DC and ED || BC

 \Rightarrow EBCD is a parallelogram.

BE=DC (opposite sides of parallelogram)

But BE=AE (E is midpoint of AB)

 $\therefore AE = CD \rightarrow (1)$

In ΔAFE and ΔCFD

 $\angle EAF = \angle DCF$ (BA || CD and AC is transversal, alternate interior angles)

 $\angle AEF = \angle CDF$ (BA || CD and ED is transversal, alternate interior angles)

AE=CD (from (1))

 $\triangle AFE \cong \triangle CFD$ (ASA congruence rule)

 \therefore AF = CF (CPCT)

 \Rightarrow *l* bisects AC.

Example 6 : In \triangle ABC, D, E and F are respectively the mid-points of sides AB, BC and CA (see Fig. 8.18). Show that \triangle ABC is divided into four congruent triangles by joining D, E and F.

Solution: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side.

DE || AC , DF || BC and EF || AB

Therefore ADEF, BDFE and DFCE are all parallelograms.

Now DE is a diagonal of the parallelogram BDFE,

Therefore, $\Delta BDE \cong \Delta FED$

Similarly $\triangle DAF \cong \triangle FED$ and $\triangle EFC \cong \triangle FED$

So, all the four triangles are congruent

Example 7 : l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p (see Fig. 8.19). Show that l, m and n cut off equal intercepts DE and EF on q also. p q

Sol: Let us join A to F intersecting *m* at G.

The trapezium ACFD is divided into two triangles; namely \triangle ACF and \triangle AFD.

In $\triangle ACF$, it is given that B is the mid-point of AC (AB = BC)

and BG || CF (since m || n).

So, G is the mid-point of AF .

Now, in $\triangle AFD$, we can apply the same argument as G is the mid-point of AF, GE || AD, so E is the mid-point of DF,

i.e., DE = EF

 \Rightarrow *l*, *m* and *n* cut off equal intercepts on *q* also.

EXERCISE 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that :

(*i*) SR || AC and SR =
$$\frac{1}{2}$$
 AC

(iii) PQRS is a parallelogram.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

(i) In \triangle ABC , P and Q are midpoints of AB and BC.

PQ || AC and PQ = $\frac{1}{2}$ AC \rightarrow (1)

(ii) In \triangle ADC, S and R are midpoints of DA and DC.

PQ || AC and PQ =
$$\frac{1}{2}$$
 AC \rightarrow (2)
From (1) and (2)
PQ = SR
(iii) From (1) and (2)
SR || AC and PQ || AC
 \Rightarrow PQ ||SR also PQ = SR

- \therefore PQRS is a parallelogram.
- 2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

hat l, m and n cut off equal intercepts ely BC) C C G Fn

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In $\triangle ABC$, P and Q are midpoints of AB and BC.

 $PQ \parallel AC \text{ and } PQ = \frac{1}{2} \text{ AC} \rightarrow (1)$

In \triangle ADC, S and R are midpoints of AD and DC.

$$SR \parallel AC \text{ and } SR = \frac{1}{2} AC \rightarrow (2)$$

From (1) and (2) : $PQ \parallel SR$ and PQ = SR

Similarly : $PS \parallel QR$ and PS = QR

: PQRS is a parallelogram.

 $MO \parallel PN$ and $PM \parallel NO$

PMON also a parallelogram.

 \angle MPN= \angle MON (opposite angles in a parallelogram)

But \angle MON=90⁰ (Diagonals of a rhombus perpendicular to each other)

 $\therefore \angle MPN = 90^{\circ}$

In parallelogram PQRS one angle is 900

So, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Sol: We know that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and also half of it.

In \triangle ABC, P and Q are midpoints of AB and BC.

$$PQ \parallel AC \text{ and } PQ = \frac{1}{2} \text{ AC} \rightarrow (1)$$

In \triangle ADC, S and R are midpoints of AD and DC.

SR || AC and SR =
$$\frac{1}{2}$$
 AC \rightarrow (2)

From (1)and (2) : $PQ \parallel SR$ and $PQ = SR = \frac{1}{2}AC$

Similarly : PS || QR and PS = QR = $\frac{1}{2}$ BD

Also, AC = BD (*Diagonals of a rectangle AC*, *BD are equal*)

 $\therefore PQ=QR=RS=SP$

So, PQRS is a rhombus.

4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.21). Show that F is the mid-point of BC.

Sol: We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

In $\triangle ABD$, EO $\parallel AB$ and E is mid point of AD

 \Rightarrow 0 is mid point of BD

In $\triangle CBD$, $OF \parallel CD$ and O is mid point of BD

 \Rightarrow F is mid point of BC

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig. 8.22). Show that the line segments AF and EC trisect the diagonal BD.

Sol: E and F are the mid-points of sides AB and CD

$$DF = FC = \frac{1}{2}DC$$
 and $AE = EB = \frac{1}{2}AB$

 $AB \parallel DC$ and AB = CD (ABCD is a parallelogram)

$$\Rightarrow AE \parallel FC \text{ and } \frac{1}{2}AB = \frac{1}{2}CD$$

$$\Rightarrow AE \parallel FC \text{ and } AE = FC$$

 \therefore AEFC is a parallelogram .

 $\Rightarrow AF \parallel EC$

In $\triangle ABP, EQ \parallel AP$ and E is midpoint of AB.

 \Rightarrow Q is midpoint of BP

$$\Rightarrow BQ = QP \rightarrow (1)$$

In ΔDQC , FP $\parallel CQ$ and F is midpoint of DC.

 \Rightarrow *P* is midpoint of *DQ*

$$\Rightarrow$$
 QP = PD \rightarrow (2)

From (1) and (2)

BQ = QP = PD

 \therefore The line segments AF and EC trisect the diagonal BD.

6. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that (i) D is the mid-point of AC (ii) MD ⊥ AC

(iii) CM = MA = $\frac{1}{2}$ AB

Sol: We know that the line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.

(i) $In \Delta ABC, MD \parallel BC$ and M is midpoint of AB \Rightarrow D is midpoint of AC. (ii) *MD* || *BC* and *AC* is transversal $\angle MDC + \angle BCD$ в $= 180^{\circ}$ (*Co* - interior angles are supplementary) $\angle MDC + 90^0 = 180^0$ Μ $\angle MDC = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $\therefore MD \perp AC$ (iii) In $\triangle AMD$ and $\triangle CMD$ D' AD=DC (D is midpoint of AC) $\angle ADM = \angle CDM (= 90^{\circ})$ MD = MD (Common) $\Delta AMD \cong \Delta CMD$ (SAS congruence rule) AM = CM (By CPCT)But $AM = \frac{1}{2} AB$ (*M* is mid point of AB) $\therefore CM = MA = \frac{1}{2} AB$