9

XCLASS
TANGENTS AND SECANTS TO A CIRCLE(NOTES)
Prepared by: BALABHADRA SURESH
1.

(i) The line $P Q$ and the circle have no common point. In this case $P Q$ is a nonintersecting line with respect to the circle.
(ii) The line $P Q$ intersects the circle at two points A and B. It forms a chord $A B$ on the circle with two common points. In this case the line $P Q$ is a secant of the circle.
(iii) There is only one point A, common to the line $P Q$ and the circle. This line is called a tangent to the circle.

The common point of the tangent and the circle is called the point of contact and the tangent is said to touch the circle at the common point.
2. We can draw infinite tangents to the circle.
3. We can draw two tangents to the circle from a point away from it.
4. The tangent at any point of a circle is perpendicular to the radius through the point of contact.

K Exercise-9.1

1. Fill in the blanks
(i) A tangent to a circle intersects it in \qquad ne. \qquad point (s).
(ii) A line intersecting a circle in two points is called a secant
(iii) The number of tangents drawn at the end points of the diameter is two
(iv) The common point of a tangent to a circle and the circle is called point of contact
(v) We can draw infinite tangents to a given circle.
2. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q so that $O Q=13 \mathrm{~cm}$. Find length of $P Q$.

Sol: Radius $\mathrm{OP}=5 \mathrm{~cm}$ and $\mathrm{OQ}=13 \mathrm{~cm}$
We know that angle between radius and tangent $=90^{\circ}$
In $\triangle O P Q, \angle P=90^{\circ}$
$P Q^{2}+O P^{2}=O Q^{2}$

$\mathrm{PQ}^{2}+5^{2}=13^{2}$
$\mathrm{PQ}^{2}+25=169$
$\mathrm{PQ}^{2}=169-25=144=12^{2}$
$\therefore \mathrm{PQ}=12 \mathrm{~cm}$
3. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Sol:

4. Calculate the length of tangent from a point 15 cm . away from the centre of a circle of radius 9 cm . Sol: Radius $\mathrm{OP}=9 \mathrm{~cm}$ and $\mathrm{OQ}=15 \mathrm{~cm}$

We know that angle between radius and tangent $=90^{\circ}$
In $\triangle \mathrm{OPQ}, \angle \mathrm{P}=90^{\circ}$
$P Q^{2}+O P^{2}=O Q^{2}$
$P Q^{2}+9^{2}=15^{2}$
$\mathrm{PQ}^{2}+81=225$
$\mathrm{PQ}^{2}=225-81=144=12^{2}$

$\therefore \mathrm{PQ}=12 \mathrm{~cm}$
(OR)
Radius(r) $=9 \mathrm{~cm}$
Distance between centre to point (d) $=15 \mathrm{~cm}$
The length of tangent $=\sqrt{d^{2}-r^{2}}=\sqrt{15^{2}-9^{2}}=\sqrt{225-81}=\sqrt{144}=12 \mathrm{~cm}$
5. Prove that the tangents to a circle at the end points of a diameter are parallel.

Sol: Given: A circle with centre O and $A B$ is diameter
$P Q, R S$ are tangents at A, B.
To prove: $P Q \| R S$

Proof:

Tangent is perpendicular to the radius at the point of contact

$\mathrm{OA} \perp \mathrm{PQ}$ and $\mathrm{OB} \perp \mathrm{RS}$
$\angle O A P=90^{\circ}$ and $\angle O B S=90^{\circ}$
$\Rightarrow \angle \mathrm{BAP}=90^{\circ}$ and $\angle \mathrm{ABS}=90^{\circ}$
$\Rightarrow \angle \mathrm{BAP}=\angle \mathrm{ABS}$
\Rightarrow Alternate interior angles are equal
$\Rightarrow P Q \| R S$

Theorem-9.2 : The lengths of tangents drawn from an external point to a circle are equal.

Sol: Given : A circle with centre O, PA and PB are two tangents to the circle from P .

To prove : $\mathrm{PA}=\mathrm{PB}$
Proof : Join OA, OB and OP.

In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OBP}$
$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$ (Angle between radii and tangents)
$\mathrm{OA}=0 \mathrm{~B} \quad$ (radii of same circle)
$\mathrm{OP}=\mathrm{OP}$ (common)
$\Delta \mathrm{OAP} \cong \Delta \mathrm{OBP}(\mathrm{R} . \mathrm{H} . \mathrm{S}$ congruency axiom)
$\therefore \mathrm{PA}=\mathrm{PB}$ (CPCT)
Hence proved.

Try This

"Prove the lengths of tangents drawn from an external point to a circle are equal" use Pythagoras theorem.

Sol: Given : A circle with centre $0, \mathrm{PA}$ and PB are two tangents to the circle from P.

To prove : $\mathrm{PA}=\mathrm{PB}$
Proof : Join OA, OB and OP.
In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OBP}$

$\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}$ (Angle between radii and tangents)
From \triangle OAP
$\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{PA}^{2} \rightarrow(1)$ (Pythagoras theorem)
From \triangle OBP
$\mathrm{OP}^{2}=\mathrm{OB}^{2}+\mathrm{PB}^{2} \rightarrow$ (2) (Pythagoras theorem)
From (1) and (2)
$\mathrm{OA}^{2}+\mathrm{PA}^{2}=\mathrm{OB}^{2}+\mathrm{PB}^{2}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}(\mathrm{OA}=\mathrm{OB}=$ radius $)$
$\Rightarrow \mathrm{PA}=\mathrm{PB}$
Prob1:Prove The centre of a circle lies on the bisector of the angle between two tangents drawn from a point outside it.

Sol: Let PQ and PR be two tangents drawn from a point P outside of the circle with centre 0 . Join OQ, OR and OP

In $\triangle \mathrm{OQP}$ and $\triangle \mathrm{ORP}$
$\angle \mathrm{OQP}=\angle \mathrm{ORP}=90^{\circ}$ (Angle between radii and tangents)
$\mathrm{OP}=\mathrm{OP} \quad$ (common)
$O Q=O R \quad$ (radii of same circle)
$\Delta \mathrm{OQP} \cong \Delta \mathrm{ORP}(\mathrm{R} . \mathrm{H} . \mathrm{S}$ rule)
$\angle \mathrm{OPQ}=\angle \mathrm{OPR}(\mathrm{CPCT})$
Therefore, OP is the angle bisector of $\angle \mathrm{QPR}$.
Hence, the centre lies on the bisector of the angle between the two tangents
Prob2: Prove in two concentric circles, such that a chord of the bigger circle, that touches the smaller circle is bisected at the point of contact with the smaller circle.

Sol: C_{1} and C_{2} are two concentric circles with centre 0 .
$A B$ is chord of larger circle touching the smaller circle at P
Now we prove that $A P=B P$
Join OA,OB and OP
In $\triangle \mathrm{APO}$ and $\triangle \mathrm{BPO}$
$\angle A P O=\angle B P O=90^{\circ}$ (Angle between radii and tangents)
$\mathrm{OA}=\mathrm{OB}$ (radii of same circle)
$\mathrm{OP}=\mathrm{OP} \quad$ (common)
$\Delta \mathrm{APO} \cong \triangle B P O$ (R. H. S rule)
$\therefore \mathrm{AP}=\mathrm{BP}(\mathrm{CPCT})$
Prob3: If two tangents $A P$ and $A Q$ are drawn to a circle with centre 0 from an external point A then prove $\angle \mathrm{PAQ}=2 \angle \mathrm{OPQ}=2 \angle \mathrm{OQ}$

Sol: Join OP, OQ and PQ . Let $\angle P A Q=\theta$
We know that the lengths of tangents drawn from an external point to a circle are equal.
$\mathrm{AP}=\mathrm{AQ}$, So $\triangle A P Q$ is an isosceles triangle
$\Rightarrow \angle A P Q=\angle A Q P=\alpha($ say $)$
$\theta+\alpha+\alpha=180^{\circ}$ (Angle sum property)
$2 \alpha=180^{\circ}-\theta$

$\Rightarrow \alpha=\frac{180^{\circ}-\theta}{2}=90^{\circ}-\frac{1}{2} \theta$
$\angle \mathrm{APO}=\angle \mathrm{AQO}=90^{\circ}$ (Angle between radii and tangents)
$\angle \mathrm{OPQ}=\angle \mathrm{APO}-\angle \mathrm{APQ}=90^{\circ}-\alpha=90^{\circ}-\left(90^{\circ}-\frac{1}{2} \theta\right)=\frac{1}{2} \theta=\frac{1}{2} \angle \mathrm{PAQ}$
$\angle \mathrm{OPQ}=\frac{1}{2} \angle \mathrm{PAQ} \Rightarrow \angle \mathrm{PAQ}=2 \angle \mathrm{OPQ}$
Similarly $\angle P A Q=2 \angle O Q P$

Prob4: If a circle touches all the four sides of a quadrilateral $A B C D$ at points $P Q R S$. Then $A B+C D=$ BC + DA.

Sol: We know that the lengths of tangents drawn from an external
point to a circle are equal.
A is external point and AP,AS are tangents then
$\mathrm{AP}=\mathrm{AS}$
Similarly
$\mathrm{BP}=\mathrm{BQ}$
$C R=C Q$
DR $=$ DS
$(1)+(2)+(3)+(4)$ we get

$A P+B P+C R+D R=A S+B Q+C Q+D S$
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{BQ}+\mathrm{CQ})+(\mathrm{AS}+\mathrm{DS})$
$A B+C D=B C+D A$
Example-1. Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle 60°.

Sol: Let ' O^{\prime} ' is the centre of the circle. Radius $\mathrm{OA}=\mathrm{OB}=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$
$\triangle O A P \cong \triangle O B P($ R. H.S congruency $)$
$\angle O P A=\angle O P B=\frac{1}{2} \times \angle A P B=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
Now In $\triangle O A P, \sin 30^{\circ}=\frac{O A}{O P}=\frac{5}{O P}$
$\frac{1}{2}=\frac{5}{O P} \Rightarrow O P=5 \times 2=10 \mathrm{~cm}$

Rough diagram

Steps of construction:

1. Draw a circle with centre 0 and radius 5 cm .
2. Take a point P such that $O P=10 \mathrm{~cm}$. Join $O P$.
3. Draw a perpendicular bisector to OP to meet at M.
4. Take M as centre and $\mathrm{PM}=\mathrm{OM}$ as radius draw a circle.
5. Let the circle intersects the given circle at A and B. Join PA and PB
6. $P A$ and $P B$ are required tangents.

Exercise - 9.2

(i) The angle between a tangent to a circle and the radius drawn at the point of contact is 90°
(ii) From a point Q, the length of the tangent to a circle is 24 cm . and the distance of Q from the centre is 25 cm . The radius of the circle is 7 cm .
Sol: Radius $=\sqrt{d^{2}-l^{2}}=\sqrt{25^{2}-24^{2}}=\sqrt{625-576}=\sqrt{49}=7 \mathrm{~cm}$
(iii) If $A P$ and $A Q$ are the two tangents a circle with centre 0 so that $\angle P O Q=110^{\circ}$, then $\angle P A Q$ is equal to $\mathbf{7 0}^{\mathbf{0}}$

Sol: $\angle A P O=\angle A Q O=90^{\circ}($ Angle between radii and tangents $)$
$\angle A P O+\angle A Q O+\angle P O Q+\angle P A Q=360^{\circ}$ (sum of angles in quadrilateral)
$90^{\circ}+90^{\circ}+100^{\circ}+\angle P A Q=360^{\circ}$

$\angle P A Q=360^{\circ}-280^{\circ}=70^{\circ}$
(iv) If tangents PA and PB from a point P to a circle with centre 0 are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
Sol: $\angle A P B+\angle A O B=180^{\circ}$
$80^{\circ}+\angle A O B=180^{\circ}$
$\angle A O B=180^{\circ}-80^{\circ}=100^{\circ}$

$\angle P O A=\angle P O B=\frac{100^{\circ}}{2}=50^{\circ}$
(v) In the figure $X Y$ and $X^{1} Y^{1}$ are two parallel tangents to a circle with centre 0 and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{1} Y^{1}$ at B then $\angle A O B=$

Sol: In $\triangle O P A$ and $\triangle O C A$
$O P=O C($ Radii $)$
$A P=A C($ Tangents from $A)$
$O A=O A($ common $)$
$\triangle O P A \cong \triangle O C A(S . S . S$ Rule)
$\angle \mathrm{POA}=\angle \mathrm{COA}(C P C T) \rightarrow(1)$

Similarly
$\angle Q O B=\angle C O B \rightarrow$ (2)
$\angle P O A+\angle C O A+\angle Q O B+\angle C O B=180^{\circ}$ (Sum of angles on strait line)
$\angle C O A+\angle C O A+\angle C O B+\angle C O B=180^{\circ}$ (from (1), (2))
$2(\angle C O A+\angle C O B)=180^{\circ}$
$\angle A O B=\frac{180^{\circ}}{2}=90^{\circ}$
2. Two concentric circles are radii 5 cm and 3 cm are drawn. Find the length of the chord of the larger circle which touches the smaller circle

Sol: Let O is the centre of circles and AB is chord of larger circle touches smaller circle at P .
Radii of concentric circle $\mathrm{OP}=3 \mathrm{~cm}, \mathrm{OA}=5 \mathrm{~cm}$
In $\triangle A P O, \angle P=90^{\circ}$ (Angle between radii and tangents)
$A P^{2}+O P^{2}=O A^{2}$
$A P^{2}+3^{2}=5^{2}$
$A P^{2}+9=25$
$A P^{2}=25-9=16=4^{2}$
$A P=4 \mathrm{~cm}$
Similarly BP $=4 \mathrm{~cm}$

$\mathrm{AB}=4+4=8 \mathrm{~cm}$
3. Prove that the parallelogram circumscribing a circle is a rhombus.

Sol: Let ABCD is a parallelogram circumscribing a circle.
Let P, Q, R, S be points of contact
We know that the lengths of tangents drawn from an external point to a circle are equal.

A is external point and AP,AS are tangents then
$\mathrm{AP}=\mathrm{AS}$
Similarly
$\mathrm{BP}=\mathrm{BQ}$
$C R=C Q$
DR $=\mathrm{DS}$

(1) $+(2)+(3)+(4)$ we get
$A P+B P+C R+D R=A S+B Q+C Q+D S$
$(\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{DR})=(\mathrm{BQ}+\mathrm{CQ})+(\mathrm{AS}+\mathrm{DS})$
$A B+C D=B C+D A$
$A B+A B=B C+B C$ (opposite sides of a parallelogram are equal $A B=C D$ and $B C=D A$)
$2 \mathrm{AB}=2 \mathrm{BC} \Rightarrow \mathrm{AB}=\mathrm{BC}$
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$. Hence ABCD is a rhombus
4. A triangle ABC is drawn to circumscribe a circle of radius 3 cm . such that the segments BD and $D C$ into which $B C$ is divided by the point of contact D are of length 9 cm . and 3 cm . respectively (See adjacent figure). Find the sides AB and AC .

Sol: Radius $0 \mathrm{D}=0 \mathrm{E}=3 \mathrm{~cm}$
Tangents from an external point to circle are equal
$\mathrm{CD}=\mathrm{CE}=3 \mathrm{~cm}$ and $\mathrm{BD}=\mathrm{BF}=9 \mathrm{~cm}$
$\mathrm{AF}=\mathrm{AE}=x$ (say)
$A B=(x+9) c m$ and $A C=(x+3) \mathrm{cm}$
Now in quadrilateral CDOE
$O D=O E=C D=C E=3 \mathrm{~cm}$ and $\angle C D O=90^{\circ}$
\therefore CDOE is a square
$\Rightarrow \angle \mathrm{DCE}=90^{\circ}$
In $\triangle \mathrm{ACB}, \angle \mathrm{C}=90^{\circ}$
$A B^{2}=B C^{2}+A C^{2}$ (Pythagoras theorem)
$(x+9)^{2}=12^{2}+(x+3)^{2}$
$x^{2}+18 x+81=144+x^{2}+6 x+9$
$18 x-6 x=153-81$
$12 x=72$
$x=\frac{72}{12}=6$
$\mathrm{AB}=(x+9) \mathrm{cm}=(6+9) \mathrm{cm}=15 \mathrm{~cm}$
$\mathrm{AC}=(x+3) \mathrm{cm}=(6+3) \mathrm{cm}=9 \mathrm{~cm}$
5. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths. Verify by using Pythagoras Theorem.

Sol:
Steps of construction :

1. Draw a circle with centre 0 and radius 6 cm .
2. Take a point P such that $O P=10 \mathrm{~cm}$. Join $O P$.
3. Draw a perpendicular bisector to OP to meet at M.
4. Take M as centre and $P M=O M$ as radius draw a circle.
5. Let the circle intersects the given circle at A and B . Join PA and PB
6. $\quad \mathrm{PA}$ and PB are required tangents and their lengths are 8 cm

Verification:
$\mathrm{OA}=6 \mathrm{~cm}, \mathrm{OP}=10 \mathrm{~cm}$
length of tangent $=A P=\sqrt{O P^{2}-O A^{2}}=\sqrt{10^{2}-6^{2}}=\sqrt{100-36}=\sqrt{64}=8 \mathrm{~cm}$
6. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.
Sol:

Steps of construction:

1. Draw two concentric circles with centre 0 and radius 4 cm and 6 cm
2. Take a point P on larger circle and Join OP.
3. Draw a perpendicular bisector to OP to meet at M.
4. Take M as centre and $\mathrm{PM}=\mathrm{OM}$ as radius draw a circle.
5. Let the circle intersects the given circle at A and B. Join PA and PB
6. PA and PB are required tangents.
7. Length of tangent $=4.5 \mathrm{~cm}$

Verification:
$\mathrm{OA}=4 \mathrm{~cm}, \mathrm{OP}=6 \mathrm{~cm}$
length of tangent $=A P=\sqrt{O P^{2}-O A^{2}}=\sqrt{6^{2}-4^{2}}=\sqrt{36-16}=\sqrt{20}=4.47 \mathrm{~cm}$
8. In a right triangle ABC , a circle with a side AB as diameter is drawn to intersect the hypotenuse $A C$ in P. Prove that the tangent to the circle at P bisects the side $B C$.
Sol: In $\triangle A B C, \angle B=90^{\circ} \Rightarrow Q B$ is tangent
QP is also tangent.
We know that the lengths of tangents drawn from an external point to a circle are equal.
$\therefore Q B=Q P \rightarrow$ (1)
From the figure $\angle Q C P=\angle Q P C$
$\Rightarrow Q P=Q C \rightarrow(2)$

From (1) and (2)
$Q B=Q C$
$\Rightarrow P Q$ bisects $B C$
\Rightarrow The tangent to the circle at P bisects the side $B C$

S.No.	Figure	Dimentions	Area
1.	\square	length $=l$ breadth $=b$	$\mathrm{~A}=l b$
2.	\square	Side $=\mathrm{s}$	
3.	base $=b$		
height $=h$			

Segment of a circle formed by a secant

A secant is a line which intersects the circle at two distinct points.

1. Find the area of sector, whose radius is 7 cm . with the given angle:
i. $\quad \mathbf{6 0}^{\mathbf{0}}$

Sol: Radius $(\mathrm{r})=7 \mathrm{~cm}$; Angle $\left(x^{0}\right)=60^{\circ}$
Area of sector $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{60^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7$
$=\frac{1}{6} \times 22 \times 7=\frac{77}{3} \mathrm{~cm}^{2}$
ii. $\mathbf{3 0}^{\mathbf{0}}$

Sol: Radius $(\mathrm{r})=7 \mathrm{~cm}$; Angle $\left(x^{0}\right)=30^{0}$

$$
\begin{aligned}
& \text { Area of sector }=\frac{x^{0}}{360^{0}} \times \pi r^{2} \\
& =\frac{30^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7 \\
& =\frac{1}{12} \times 22 \times 7=\frac{77}{6} \mathrm{~cm}^{2}
\end{aligned}
$$

iii. $\mathbf{7 2}^{\mathbf{0}}$

Sol: Radius(r) $=7 \mathrm{~cm}$
Angle $\left(x^{0}\right)=72^{0}$

$$
\begin{aligned}
& \text { Area of sector }=\frac{x^{0}}{360^{0}} \times \pi r^{2} \\
& =\frac{72^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5} \times 22 \times 7 \\
& =\frac{154}{5} \mathrm{~cm}^{2}
\end{aligned}
$$

iv 90°
Sol: Radius(r) $=7 \mathrm{~cm}$
Angle $\left(x^{0}\right)=90^{\circ}$
Area of sector $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{90^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7$
$=\frac{1}{4} \times 22 \times 7$
$=\frac{77}{2} \mathrm{~cm}^{2}$
v. 120^{0}

Sol: Radius(r) $=7 \mathrm{~cm}$
Angle $(\theta)=120^{\circ}$
Area of sector $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{120^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7$
$=\frac{1}{3} \times 22 \times 7$
$=\frac{154}{3} \mathrm{~cm}^{2}$
2. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 10 minutes.
Sol: Radius(r) $=14 \mathrm{~cm}$
Swept by minute hand in 1 minute $=\frac{360^{\circ}}{60}=6^{0}$
Angle $(\theta)=10 \times 6^{0}=60^{\circ}$
Area of sector $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{60}{360^{0}} \times \frac{22}{7} \times 14 \times 14$
$=\frac{1}{6} \times 22 \times 2 \times 14=\frac{22 \times 14}{3}=\frac{308}{3} \mathrm{~cm}^{2}$
The area swept by the minute hand in 10 minutes $=\frac{308}{3} \mathrm{~cm}^{2}$
Example-1. Find the area of the segment AYB showing in the adjacent figure. If radius of the circle is 21 cm and $\angle \mathrm{AOB}=120^{\circ}$ (Use $\pi=\frac{22}{7}$ and $\sqrt{3}=1.732$)

Sol: Radius of the circle $(\mathrm{r})=0 \mathrm{~A}=0 \mathrm{~B}=21 \mathrm{~cm}$
Let $O M \perp A B$
$\angle A M O=\angle B M O=90^{\circ}$
$\triangle A M O \cong \triangle B M O($ R.H.S rule $)$

$\angle A O M=\angle B O M=\frac{120^{\circ}}{2}=60^{\circ}$
From $\triangle A P O$
$\sin 60^{\circ}=\frac{A M}{O A} \Rightarrow \frac{\sqrt{3}}{2}=\frac{A M}{21} \Rightarrow A M=\frac{21 \times \sqrt{3}}{2} \mathrm{~cm}$

$\cos 60^{\circ}=\frac{O M}{O A} \Rightarrow \frac{1}{2}=\frac{O M}{21} \Rightarrow O M=\frac{21}{2} \mathrm{~cm}$
$A B=2 \times A M=2 \times \frac{21 \times \sqrt{3}}{2} \mathrm{~cm}=21 \sqrt{3} \mathrm{~cm}$
Area of the sector $O A Y B=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{120^{0}}{360^{0}} \times \frac{22}{7} \times 21 \times 21$
$=462 \mathrm{~cm}^{2}$
Area of triangle $O A B=\frac{1}{2} \times A B \times O M$
$=\frac{1}{2} \times 21 \sqrt{3} \times \frac{21}{2}$
$=\frac{441 \sqrt{3}}{4} \mathrm{~cm}^{2}$
$=\frac{441 \times 1.732}{4}=441 \times 0.433=190.953 \mathrm{~cm}^{2}$
Area of the segment $\mathrm{AYB}=$ Area of the sector $O A Y B-$ Area of triangle $O A B$
$=462-190.953=271.074 \mathrm{~cm}^{2}$
Example-2. Find the area of the segments shaded in figure, if $P Q=24 \mathrm{~cm} ., P R=7 \mathrm{~cm}$. and $Q R$ is the diameter of the circle with centre 0 (Take $\pi=\frac{22}{7}$)

Sol: Area of the segments shaded = Area of semicircle OQPR - Area of triangle PQR
$\angle Q P R=90^{\circ}$ (Angle in a semicircle)
$\mathrm{QR}^{2}=\mathrm{PQ}^{2}+\mathrm{PR}^{2}$ (pythagoras theorem)
$=24^{2}+7^{2}$
$=576+49$
$=625$

$Q R=\sqrt{625}=25 \mathrm{~cm}$
Radius of the $\operatorname{circle}(r)=\frac{25}{2} \mathrm{~cm}$
Area of semicircle OQPR $=\frac{1}{2} \times \pi r^{2}$
$=\frac{1}{2} \times \frac{22}{7} \times \frac{25}{2} \times \frac{25}{2}$
$=\frac{6875}{28}=245.53 \mathrm{~cm}^{2}$
Area of triangle $\mathrm{QPR}=\frac{1}{2} \times Q P \times P R$
$=\frac{1}{2} \times 24 \times 7$
$=84 \mathrm{~cm}^{2}$
Area of the shaded segments $=245.53-84=161.53 \mathrm{~cm}^{2}$
Example-3. A round table top has six equal designs as shown in the figure. If the radius of the table top is 14 cm ., find the cost of making the designs with paint at the rate of ₹ 5 per cm 2 . (use $\sqrt{3}=$ 1.732)

Sol: We know that the radius of circumscribing circle of a regular hexagon is equal to the length of its side.
\therefore Each side of regular hexagon $=14 \mathrm{~cm}$.
Therefore, Area of six design segments = Area of circle - Area of the regular hexagon.
Area of circle $=\pi r^{2}$
$=\frac{22}{7} \times 14 \times 14$
$=22 \times 2 \times 14$
$=616 \mathrm{~cm}^{2}$
Area of regular hexagon $=6 \times \frac{\sqrt{3}}{4} \times a^{2}$
$=6 \times \frac{\sqrt{3}}{4} \times 14 \times 14$

$=294 \times 1.732$
$=509.21 \mathrm{~cm}^{2}$
Area of six design $=616-509.21=106.79 \mathrm{~cm}^{2}$
Cost of making the designs with paint for $1 \mathrm{~cm}^{2}=₹ 5$
Total cost $=₹ 5 \times 106.79=₹ 533.95$

W. Exercise - 9.3

1. A chord of a circle of radius 10 cm . subtends a right angle at the centre. Find the area of the corresponding: (use $\pi=3.14$) i. Minor segment ii. Major segment.
Sol: Area of the sector OAYB $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$

$$
=\frac{90^{0}}{360^{0}} \times 3.14 \times 10 \times 10
$$

$=\frac{1}{4} \times 314=78.5 \mathrm{~cm}^{2}$
Area of triangle $\mathrm{OAB}=\frac{1}{2} \times O A \times O B$

$=\frac{1}{2} \times 10 \times 10=50 \mathrm{~cm}^{2}$
Area of circle $=\pi r^{2}$
$=3.14 \times 10 \times 10$
$=314 \mathrm{~cm}^{2}$
i) Area of minor segment
$=$ Area of the sector $O A Y B-$ Area of triangle $O A B$
$=78.5-50=28.5 \mathrm{~cm}^{2}$
ii) Area of major segment
$=$ Area of circle - Area of minor segment
$=314-28.5=285.5 \mathrm{~cm}^{2}$
2. A chord of a circle of radius 12 cm . subtends an angle of 120° at the centre. Find the area of the corresponding minor segment of the circle (use $\pi=3.14$ and $\sqrt{3}=1.732$).

Sol: Radius of the circle $(\mathrm{r})=0 \mathrm{~A}=0 \mathrm{~B}=21 \mathrm{~cm}$
Let $\mathrm{OM} \perp \mathrm{AB}$
$\angle \mathrm{AMO}=\angle \mathrm{BMO}=90^{\circ}$
$\triangle A M O \cong \triangle B M O($ R. H.S rule $)$
$\angle A O M=\angle B O M=\frac{120^{\circ}}{2}=60^{\circ}$
From \triangle AMO
$\sin 60^{\circ}=\frac{A M}{O A} \Rightarrow \frac{\sqrt{3}}{2}=\frac{A M}{12} \Rightarrow \mathrm{AM}=\frac{12 \times \sqrt{3}}{2}=6 \sqrt{3} \mathrm{~cm}$

$\cos 60^{\circ}=\frac{O M}{O A} \Rightarrow \frac{1}{2}=\frac{O M}{12} \Rightarrow \mathrm{OM}=\frac{12}{2}=6 \mathrm{~cm}$
$A B=2 \times A M=2 \times 6 \sqrt{3} \mathrm{~cm}=12 \sqrt{3} \mathrm{~cm}$
Area of the sector OAYB $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{120^{0}}{360^{0}} \times 3.14 \times 12 \times 12=150.72 \mathrm{~cm}^{2}$
Area of triangle $\mathrm{OAB}=\frac{1}{2} \times A B \times O M$
$=\frac{1}{2} \times 12 \sqrt{3} \times 6$
$=36 \sqrt{3} \mathrm{~cm}^{2}$
$=36 \times 1.732=62.352 \mathrm{~cm}^{2}$
Area of the segment $A Y B=$ Area of the sector OAYB - Area of triangle OAB
$=150.72-62.352=88.368 \mathrm{~cm}^{2}$
3. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm . sweeping through an angle of 115°. Find the total area cleaned at each sweep of the blades. (use $\pi=\frac{22}{7}$) Sol:

Length of wiper blade $(r)=25 \mathrm{~cm}$
Angle made by blade $(x)=115^{0}$
Area cleaned each swipe of blade

$=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
$=\frac{115^{0}}{360^{0}} \times \frac{22}{7} \times 25 \times 25$
$=627.48 \mathrm{~cm}^{2}$
The total area cleaned at each sweep of the blades $=2 \times 627.48=1254.96 \mathrm{~cm}^{2}$
4. Find the area of the shaded region in figure, where $A B C D$ is a square of side 10 cm . and semicircles are drawn with each side of the square as diameter (use $\pi=3.14$).

Sol: Side of square $(\mathrm{s})=10 \mathrm{~cm}$
Radius of semi-circle (r) $=\frac{10}{2}=5 \mathrm{~cm}$
Area of I + Area of III $=$ Area of $\mathrm{ABCD}-2 \times$ Area of semi circle
$=s^{2}-2 \times \frac{1}{2} \pi r^{2}$
$=10 \times 10-3.14 \times 5 \times 5$

$=100-78.5$
$=21.5 \mathrm{~cm}^{2}$
Similarly
Area of II + Area of IV $=21.5 \mathrm{~cm}^{2}$
\therefore Area of unshaded region $=21.5 \mathrm{~cm}^{2}+21.5 \mathrm{~cm}^{2}=43 \mathrm{~cm}^{2}$
Area of the shaded region in figure $=$ Area of $A B C D-$ Area of unshaded region
$=100-43=57 \mathrm{~cm}^{2}$
5. Find the area of the shaded region in figure, if $A B C D$ is a square of side 7 cm . and APD and BPC are semicircles. (use $=\frac{22}{7}$)
Sol: Side of square $(\mathrm{s})=7 \mathrm{~cm}$
Radius of semi-circle (r) $=\frac{7}{2} \mathrm{~cm}$

Area of the shaded region $=$ Area of $\mathrm{ABCD}-2 \times$ Area of semicircle
$=s^{2}-2 \times \frac{1}{2} \pi r^{2}$
$=7 \times 7-\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=49-38.5=10.5 \mathrm{~cm}^{2}$
6. In figure, OACB is a quadrant of a circle with centre 0 and radius 3.5 cm . If $\mathrm{OD}=2 \mathrm{~cm}$., find the area of the shaded region(use $\pi=\frac{22}{7}$)
Sol: Radius of the $\operatorname{sector}(\mathrm{r})=3.5=\frac{35}{10}=\frac{7}{2} \mathrm{~cm}$
Angle of $\operatorname{sector}(x)=90^{\circ}$
Area of shaded region $=$ Area of sector AOBC - Area of $\triangle B O D$

$=\frac{x^{0}}{360^{0}} \times \pi r^{2}-\frac{1}{2} \times \mathrm{OB} \times \mathrm{OD}$
$=\frac{90^{0}}{360^{0}} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}-\frac{1}{2} \times \frac{7}{2} \times 2$
$=\frac{77}{8}-\frac{7}{2}=9.625-3.5=6.125 \mathrm{~cm}^{2}$
7. AB and CD are respectively arcs of two concentric circles of radii 21 cm . and 7 cm . with centre 0 (See figure). If $\angle A O B=30^{\circ}$, find the area of the shaded region

Sol: Radii of sectors $O A B$ and $O C D$ are 21 cm and $7 \mathrm{~cm}, \angle \mathrm{AOB}=30^{\circ}$
Area of the sector $=\frac{x^{0}}{360^{0}} \times \pi r^{2}$
Area of shaded region=Area of sector OAB-Area of sector OCD
$=\left(\frac{30^{0}}{360^{0}} \times \frac{22}{7} \times 21 \times 21\right)-\left(\frac{30^{0}}{360^{0}} \times \frac{22}{7} \times 7 \times 7\right)$
$=\frac{1}{12} \times \frac{22}{7}(21 \times 21-7 \times 7)$
$=\frac{11}{42}(441-49)$
$=\frac{11 \times 392}{42}=\frac{11 \times 56}{6}=\frac{11 \times 28}{3}=\frac{308}{3}=102.67 \mathrm{~cm}^{2}$
8. Calculate the area of the designed region in figure, common between the two quadrants of the circles of radius 10 cm . each. (use $\pi=3.14$)
Sol: Are of $I=$ Area of sectorABPD - Area of $\triangle A B D$
$=\frac{x^{0}}{360^{0}} \times \pi r^{2}-\frac{1}{2} \times A B \times A D$
$=\frac{90^{0}}{360^{0}} \times 3.14 \times 10 \times 10-\frac{1}{2} \times 10 \times 10$
$=\frac{314}{4}-50$

$=78.5-50$
$=28.5 \mathrm{~cm}^{2}$
Similarly Area of $\mathrm{II}=28.5 \mathrm{~cm}^{2}$
\therefore Area of shaded region $=28.5 \mathrm{~cm}^{2}+28.5 \mathrm{~cm}^{2}=57 \mathrm{~cm}^{2}$

