1. The Indian mathematician Aryabhata (470 AD) was the first to give formula for the sum of squares and cubes of natural number in his famous work Aryabhatiyam written around 499 A.D
2. Carl Fredrich Gauss (1777-1855) is a great German Mathematician find the formula for sum of first n terms in AP
3. Aryabhata also gave the formula for finding the sum of n terms of an Arithmetic Progression starting with $\mathrm{p}^{\text {th }}$ term.

Arithmetic Progressions

(i) An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
(ii) This fixed number is called the common difference of the AP.
(iii) The first term is denoted by a_{1}, second term $=a_{2}$, third term $=a_{3}, \ldots \ldots \ldots$
(iv) Generally first term denoted by ' a ' and common difference by ' d '.
(v) General form of AP:
$a, a+d, a+2 d, a+3 d \ldots \ldots$
(vi) $n^{\text {th }}$ term of $A P a_{n}=a+(n-1) d$

Example1: For the AP $\frac{1}{4}, \frac{-1}{4}, \frac{-3}{4}, \frac{-5}{4}, \ldots \ldots$ write the first term a and the common difference d. And find the $7^{\text {th }}$ term
Sol: $\quad a_{1}=\frac{1}{4}, a_{2}=\frac{-1}{4}, a_{3}=\frac{-3}{4}, a_{4}=\frac{-5}{4}$
First term $=a=a_{1}=\frac{1}{4}$
Common difference $=d=a_{2}-a_{1}=\frac{-1}{4}-\frac{1}{4}=\frac{-1-1}{4}=\frac{-2}{4}=\frac{-1}{2}$
$7^{\text {th }}$ term $=a+6 d=\frac{1}{4}+6 \times\left(\frac{-1}{2}\right)$
$=\frac{1}{4}-3=\frac{1-12}{4}=\frac{-11}{4}$
Example-2. Which of the following forms an AP? If they form AP then write next two terms?
(i) $4,10,16,22, \ldots$

Sol: $a_{1}=4, a_{2}=10, a_{3}=16, a_{4}=22$
$a_{2}-a_{1}=10-4=6$
$a_{3}-a_{2}=16-10=6$
$a_{4}-a_{3}=22-16=6$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=6$
The next two terms are: $22+6=28$ and $28+6=34$
(ii) $1,-1,-3,-5, \ldots$

Sol: $a_{1}=1, a_{2}=-1, a_{3}=-3, a_{4}=-5, .$.
$a_{2}-a_{1}=-1-1=-2$
$a_{3}-a_{2}=-3-(-1)=-3+1=-2$
$a_{4}-a_{3}=-5-(-3)=-5+3=-2$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=-2$
The next two terms are: $-5-2=-7$ and $-7-2=-9$
(iii) $-2,2,-2,2,-2, \ldots$

Sol: $\quad a_{1}=-2, a_{2}=2, a_{3}=-2, a_{4}=2, a_{5}=-2$
$a_{2}-a_{1}=2-(-2)=2+2=4$
$a_{3}-a_{2}=-2-2=-4$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP.
(iv) $1,1,1,2,2,2,3,3,3, \ldots$

Sol: $a_{1}=1, a_{2}=1, a_{3} 1,=a_{4}=2$,
$a_{2}-a_{1}=1-1=0$
$a_{3}-a_{2}=1-1=0$
$a_{4}-a_{3}=2-1=1$
$a_{3}-a_{2} \neq a_{4}-a_{3}$
So, the given list of numbers does not form an AP.
(v) $x, 2 x, 3 x, 4 x \ldots$.

Sol: $a_{1}=x, a_{2}=2 x, a_{3}=3 x, a_{4}=4 x$,
$a_{2}-a_{1}=2 x-x=x$
$a_{3}-a_{2}=3 x-2 x=x$
$a_{4}-a_{3}=4 x-3 x=x$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=x$
The next two terms are: $4 x+x=5 x$ and $5 x+x=6 x$

ExERCISE-6.1

1. In which of the following situations, does the list of numbers involved make an arithmetic progression, and why?
(i) The taxi fare after each km when the fare is ₹ 20 for the first km and rises by ₹ 8 for each additional km.

Sol: Taxi fare for first $\mathrm{km}=$ ₹ 20
Taxi fare for second $\mathrm{km}=₹ 20+₹ 8=₹ 28$
Taxi fare for third $\mathrm{km}=₹ 28+₹ 8=₹ 36$
\therefore The taxi fares are ₹ 20 , ₹ 28 , ₹ 36 , ₹ $42,$.
It is an arithmetic progression with common difference $=8$
(ii) The amount of air present in a cylinder when a vacuum pump removes $\frac{1}{4}$ of the air remaining in the cylinder at a time.
Sol: let the amount of air present in cylinder $=x$
(If a vacuum pump removes $\frac{1}{4}$ of the air then the remaining air is $\frac{3}{4}$ of it)
When vacuum pump use first time remaining air $=\frac{3}{4} \times x=\frac{3 x}{4}$
Vacuum pump use second time remaining air $=\frac{3}{4} \times \frac{3 x}{4}=\frac{9 x}{16}$
Vacuum pump use third time remaining air $=\frac{3}{4} \times \frac{9 x}{16}=\frac{27 x}{64}$
List of air present in cylinder is $x, \frac{3 x}{4}, \frac{9 x}{16}, \frac{27 x}{64}, \ldots$
$a_{2}-a_{1}=\frac{3 x}{4}-x=\frac{3 x-4 x}{4}=\frac{-x}{4}$
$a_{3}-a_{2}=\frac{9 x}{16}-\frac{3 x}{4}=\frac{9 x-12 x}{16}=\frac{-3 x}{16}$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP.
(iii) The cost of digging a well, after every metre of digging, when it costs ₹ 150 for the first rises by ₹ 50 for each subsequent metre.
Sol: The cost of digging for first metre=₹ 150
The cost of digging for second metre=₹ $150+₹ 50=₹ 200$
The cost of digging for third metre $=₹ 200+₹ 50=₹ 250$
The cost of digging for fourth metre $=₹ 250+₹ 50=₹ 300$
The costs are ₹ 150 , ₹ 200 , ₹ 250 , ₹ 300 ,

It is an arithmetic progression with common difference $=₹ 50$
(iv) The amount of money in the account every year, when ₹10000 is deposited at compound interest at 8% per annum.
Sol: $\quad P=₹ 10000, R=8 \%$,
$A=P\left(1+\frac{R}{100}\right)^{n}$
First year ammount $=10000\left(1+\frac{8}{100}\right)^{1}=10000 \times \frac{108}{100}=₹ 10800$
Second year ammount $=10000\left(1+\frac{8}{100}\right)^{2}=10000 \times \frac{108}{100} \times \frac{108}{100}=₹ 11664$
Third year ammount $=10000\left(1+\frac{8}{100}\right)^{1}=10000 \times \frac{108}{100} \times \frac{108}{100} \times \frac{108}{100}=₹ 12597.12$
The amounts are ₹ 10000 , ₹ 10800 , ₹ 11664 , ₹ $12597.12, \ldots$
$a_{2}-a_{1}=₹ 10800-₹ 10000=₹ 800$
$a_{3}-a_{2}=₹ 11664-₹ 10800=₹ 864$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
The given situations does not form an AP
2. Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) $\boldsymbol{a}=10, \boldsymbol{d}=\mathbf{1 0}$

Sol: $a_{1}=a=10$
$a_{2}=a+d=10+10=20$
$a_{3}=a+2 d=10+2 \times 10=10+20=30$
$a_{4}=a+3 d=10+3 \times 10=10+30=40$
The first four terms of AP are $10,20,30,40$
(ii) $\boldsymbol{a}=-2, \boldsymbol{d}=\mathbf{0}$

Sol: $a_{1}=a=-2$
$a_{2}=a+d=-2+0=-2$
$a_{3}=a+2 d=-2+2 \times 0=-2+0=-2$
$a_{4}=a+3 d=-2+3 \times 0=-2+0=-2$
The first four terms of AP are $-2,-2,-2,-2, .$.
(iii) $\mathrm{a}=4, \mathrm{~d}=-3$

Sol: $a_{1}=a=4$

$$
\begin{aligned}
& a_{2}=a+d=4+(-3)=4-3=1 \\
& a_{3}=a+2 d=4+2 \times(-3)=4-6=-2 \\
& a_{4}=a+3 d=4+3 \times(-3)=4-9=-5
\end{aligned}
$$

The first four terms of AP are 4,1, $-2,-5$
(iv) $\boldsymbol{a}=-\mathbf{1}, \boldsymbol{d}=\frac{1}{2}$

Sol: $\quad a_{1}=a=-1$
$a_{2}=a+d=-1+\frac{1}{2}=\frac{-2+1}{2}=\frac{-1}{2}$
$a_{3}=a+2 d=-1+2 \times\left(\frac{1}{2}\right)=-1+1=0$
$a_{4}=a+3 d=-1+3 \times\left(\frac{1}{2}\right)=-1+\frac{3}{2}=\frac{-2+3}{2}=\frac{1}{2}$
The first four terms of AP are $-1, \frac{-1}{2}, 0, \frac{1}{2}$
(v) $a=-1.25, d=-0.25$

Sol: $a_{1}=a=-1.25$
$a_{2}=a+d=-1.25+(-0.25)=-1.25-0.25=-1.5$
$a_{3}=a+2 d=-1.25+2 \times(-0.25)=-1.25-0.50=-1.75$
$a_{4}=a+3 d=-1.25+3 \times(-0.25)=-1.25-0.75=-2$
The first four terms of AP are $-1.25,-1.5,-1.75,-2$
3. For the following APs, write the first term and the common difference:
(i) $3,1,-1,-3, .$.

Sol: First term=a=3
Common difference $=d=a_{2}-a_{1}=1-3=-2$
(ii) $-5,-1,3,7, \ldots$

Sol: first term $=a=3$
Common difference $=d=a_{2}-a_{1}=1-3=-2$
(iii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \ldots \ldots$

Sol: first term $=a=\frac{1}{3}$
Common difference $=d=a_{2}-a_{1}=\frac{5}{3}-\frac{1}{3}=\frac{5-1}{3}=\frac{4}{3}$
(iv) $0.6,1.7,2.8,3.9, \ldots$

Sol: First term $=a=0.6$
Common difference $=d=a_{2}-a_{1}=1.7-0.6=1.1$
4. Which of the following are APs ? If they form an AP, find the common difference d and write three more terms.
(i) $2,4,8,16, \ldots$

Sol: $a_{1}=2, a_{2}=4, a_{3}=8, a_{4}=16$
$a_{2}-a_{1}=4-2=2$
$a_{3}-a_{2}=8-4=4$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP
(ii) $2, \frac{5}{2}, 3, \frac{7}{2} \ldots$

Sol: $a_{1}=2, a_{2}=\frac{5}{2} a_{3}=3, a_{4}=\frac{7}{2}$
$a_{2}-a_{1}=\frac{5}{2}-2=\frac{5-4}{2}=\frac{1}{2}$
$a_{3}-a_{2}=3-\frac{5}{2}=\frac{6-5}{2}=\frac{1}{2}$
$a_{4}-a_{3}=\frac{7}{2}-3=\frac{7-6}{3}=\frac{1}{2}$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=\frac{1}{2}$
The next three terms are: $\frac{7}{2}+\frac{1}{2}=\frac{8}{2}, \frac{8}{2}+\frac{1}{2}=\frac{9}{2}, \frac{9}{2}+\frac{1}{2}=\frac{10}{2} \Rightarrow 4, \frac{9}{2}, 5$
(iii) $-1.2,-3.2,-5.2,-7.2, \ldots$

Sol: $a_{1}=-1.2, a_{2}=-3.2, a_{3}=-5.2, a_{4}=-7.2$
$a_{2}-a_{1}=-3.2-(-1.2)=-3.2+1.2=-2$
$a_{3}-a_{2}=-5.2-(-3.2)=-5.2+3.2=-2$
$a_{4}-a_{3}=-7.2-(-5.2)=-7.2+5.2=-2$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=-2$
The next three terms are: $-7.2-2=-9.2,-9.2-2=-11.2,-11.2-2=-13.2$
$\Rightarrow-9.2,-11.2,-13.2$
(iv) $-10,-6,-2,2, \ldots$

Sol: $a_{1}=-10, a_{2}=-6, a_{3}=-2, a_{4}=2$
$a_{2}-a_{1}=-6-(-10)=-6+10=4$
$a_{3}-a_{2}=-2-(-6)=-2+6=4$
$a_{4}-a_{3}=2-(-2)=2+2=4$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=4$
The next three terms are: $-2+4=6,6+4=10,10+4=14$
$\Rightarrow 6,10,14$
(v) $3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots \ldots$

Sol: $a_{1}=3, a_{2}=3+\sqrt{2}, a_{3}=3+2 \sqrt{2}, a_{4}=3+3 \sqrt{2}$

$$
\begin{aligned}
& a_{2}-a_{1}=3+\sqrt{2}-3=\sqrt{2} \\
& a_{3}-a_{2}=3+2 \sqrt{2}-(3+\sqrt{2})=3+2 \sqrt{2}-3-\sqrt{2}=\sqrt{2} \\
& a_{4}-a_{3}=3+3 \sqrt{2}-(3+2 \sqrt{2})=3+3 \sqrt{2}-3+2 \sqrt{2}=\sqrt{2} \\
& a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots
\end{aligned}
$$

i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=\sqrt{2}$
The next three terms are:-
$(3+3 \sqrt{2})+\sqrt{2}=3+4 \sqrt{2} ;(3+4 \sqrt{2})+\sqrt{2}=3+5 \sqrt{2} ;(3+5 \sqrt{2})+\sqrt{2}=3+6 \sqrt{2}$
(vi) $0.2,0.22,0.222,0.2222, \ldots$

Sol: $a_{1}=0.2, a_{2}=0.22, a_{3}=0.222, a_{4}=0.2222$
$a_{2}-a_{1}=0.22-0.2=0.02$
$a_{3}-a_{2}=0.222-0.22=0.002$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP
(vii) $0,-4,-8,-12, \ldots$

Sol: $a_{1}=0, a_{2}=-4, a_{3}=-8, a_{4}=-12$
$a_{2}-a_{1}=-4-0=-4$
$a_{3}-a_{2}=-8-(-4)=-8+4=-4$
$a_{4}-a_{3}=-12-(-8)=-12+8=-4$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=-4$
The next three terms are:-
$-12-4=-16 ; \quad-16-4=-20 ; \quad-20-4=-24$
(viii) $-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots$.

Sol: $a_{2}-a_{1}=-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\frac{1}{2}+\frac{1}{2}=0$
$a_{3}-a_{2}=-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\frac{1}{2}+\frac{1}{2}=0$
$a_{4}-a_{3}=-\frac{1}{2}-\left(-\frac{1}{2}\right)=-\frac{1}{2}+\frac{1}{2}=0$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=0$
The next three terms are: $--\frac{1}{2},-\frac{1}{2},-\frac{1}{2}$
(ix) $1,3,9,27, \ldots . . .$.

Sol: $a_{2}-a_{1}=3-1=2$
$a_{3}-a_{2}=9-3=6$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP
(x) $a, 2 a, 3 a, 4 a, \ldots \ldots$

Sol: $a_{2}-a_{1}=2 a-a=a$
$a_{3}-a_{2}=3 a-2 a=a$
$a_{4}-a_{3}=4 a-3 a=a$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=a$
The next three terms are: $5 a, 6 a, 7 a$
(xi) $a, a^{2}, a^{3}, a^{4}, \ldots$

Sol: $a_{2}-a_{1}=a^{2}-a=a(a-1)$
$a_{3}-a_{2}=a^{3}-a^{2}=a^{2}(a-1)$
$a_{2}-a_{1} \neq a_{3}-a_{2}$
So, the given list of numbers does not form an AP
(xii) $\sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \ldots$.

Sol: $\sqrt{2}, 2 \sqrt{2}, 3 \sqrt{2}, 4 \sqrt{2}, \ldots \ldots$.
$a_{2}-a_{1}=2 \sqrt{2}-\sqrt{2}=\sqrt{2}$
$a_{3}-a_{2}=3 \sqrt{2}-2 \sqrt{2}=\sqrt{2}$

$$
\begin{aligned}
& \sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2}=2 \sqrt{2} \\
& \sqrt{18}=\sqrt{9 \times 2}=\sqrt{9} \times \sqrt{2}=3 \sqrt{2} \\
& \sqrt{32}=\sqrt{16 \times 2}=\sqrt{16} \times \sqrt{2}=4 \sqrt{2}
\end{aligned}
$$

$a_{4}-a_{3}=4 \sqrt{2}-3 \sqrt{2}=\sqrt{2}$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=\sqrt{2}$
The next three terms are: $5 \sqrt{2}, 6 \sqrt{2}, 7 \sqrt{2}$
$\Rightarrow \sqrt{50}, \sqrt{72}, \sqrt{98}$
(xiii) $\sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots \ldots$

Sol: $a_{2}-a_{1}=\sqrt{6}-\sqrt{3}$

$$
\begin{aligned}
& a_{3}-a_{2}=\sqrt{9}-\sqrt{6}=3-\sqrt{6} \\
& a_{2}-a_{1} \neq a_{3}-a_{2}
\end{aligned}
$$

So, the given list of numbers does not form an AP.
$n^{\text {th }}$ TERM(GENERAL TERM) OF AN ARITHMETIC PROGRESSION
If first term is a and common difference is d then the $n^{\text {th }}$ term of an AP is

$$
a_{n}=a+(n-1) d
$$

Example-3. Find the 10th term of the AP : 5, 1, $-3,-7 \ldots$
Sol: Given AP is $5,1,-3,-7 \ldots$

$$
\begin{aligned}
& a=5 \\
& d=a_{2}-a_{1}=1-5=-4
\end{aligned}
$$

The 10th term $=a_{10}=a+9 d$

$$
\begin{aligned}
& =5+9 \times(-4) \\
& =5-36=-31
\end{aligned}
$$

Example-4. Which term of the AP : $21,18,15, \ldots$ is -81 ? Is there any term 0 ? Give reason for your answer

Sol: First term $=a=21$
Common difference $=d=a_{2}-a_{1}=18-21=-3$
Let $a_{n}=-81$
$\Rightarrow a+(n-1) d=-81$
$\Rightarrow 21+(n-1) \times(-3)=-81$
$\Rightarrow(n-1) \times(-3)=-81-21=-102$
$\Rightarrow n-1=\frac{-102}{-3}=34$
$\Rightarrow n=34+1=35$
$\therefore-81$ is the $35^{\text {th }}$ term of the given AP.
Let $a_{n}=0$
$\Rightarrow a+(n-1) d=0$
$\Rightarrow 21+(n-1) \times(-3)=0$
$\Rightarrow(n-1) \times(-3)=-21$
$\Rightarrow n-1=\frac{-21}{-3}=7$
$\Rightarrow n=7+1=8$
\therefore The $8^{\text {th }}$ term of the given AP is 0 .
Example-5. Determine the AP whose $3^{\text {rd }}$ term is 5 and the $7^{\text {th }}$ term is 9 .
Sol: $3^{\text {rd }}$ term of $\mathrm{AP}=5 \Rightarrow a+2 d=5 \rightarrow$ (1)
$7^{\text {th }}$ term of $\mathrm{AP}=9 \Rightarrow a+6 d=9 \rightarrow$ (2)
(2) $-(1) \Rightarrow a+6 d=9$

$$
\begin{aligned}
& a+2 d=5 \\
& (-)(-)(-) \\
& \hline \frac{4 d=4}{d=1}
\end{aligned}
$$

Substitute $\mathrm{d}=1$ value in (1)
$a+2 \times 1=5$
$a=5-2$
$a=3$
Hence, the required AP is $3,4,5,6, \ldots . .$.
Example-6. Check whether 301 is a term of the list of numbers $5,11,17,23,$.
Sol: Given list of numbers $5,11,17,23, \ldots$.
$a_{2}-a_{1}=11-5=6$
$a_{3}-a_{2}=17-11=6$
$a_{4}-a_{3}=23-17=6$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP with the common difference $d=6$ and $a=5$
Let $a_{n}=301$
$\Rightarrow a+(n-1) d=301$
$\Rightarrow 5+(n-1) \times(6)=301$
$\Rightarrow(n-1) \times(6)=301-5=296$
$\Rightarrow n-1=\frac{296}{6}=\frac{148}{3}$
$\Rightarrow n=\frac{148}{3}+1=\frac{153}{3}$ it is not a positive integer
So, 301 is not a term of the given list of numbers.

Example-7. How many two-digit numbers are divisible by 3?

Sol: The list of two-digit numbers divisible by 3 is : $12,15,18, \ldots, 99$
Clearly it is an AP. $a=12$ and $d=15-12=3$
Let $a_{n}=99 \Rightarrow a+(n-1) d=99$
$12+(n-1) \times 3=99$
$(n-1) \times 3=99-12=87$
$n-1=\frac{87}{3}=27$
$n=29+1=30$

So, there are 30 two-digit numbers divisible by 3 .
Example-8. Find the $11^{\text {th }}$ term from the last of the AP series given below :
AP : $10,7,4, \ldots,-62$.
Sol: Given AP is $10,7,4, \ldots$
$a=10, d=7-10=-3$
Let $a_{n}=-62 \Rightarrow a+(n-1) d=-62$
$10+(n-1) \times(-3)=-62$
$(n-1) \times(-3)=-62-10=-72$
$n-1=\frac{-72}{-3}=24$
$n=24+1=25$
So, there are 25 terms in the given AP.
The $11^{\text {th }}$ term from the last $=(25-10)^{\text {th }}$ term
$=15^{\text {th }}$ term $=a+14 d$
$=10+14 \times(-3)$
$=10-42=-32$
The $11^{\text {th }}$ term from the last of the AP is -32 .
Example-9. A sum of 1000 is invested at 8% simple interest per year. Calculate the interest at the end of each year. Do these interests form an AP? If so, find the interest at the end of $\mathbf{3 0}$ years.
Sol: simple interest $(I)=\frac{P \times T \times R}{100}$
Here $\mathrm{P}=1000, \mathrm{R}=8 \%$
The interest at the end of $1^{\text {st }}$ year $=\frac{1000 \times 1 \times 8}{100}=$ ₹ 80
The interest at the end of $2^{\text {nd }}$ year $=\frac{1000 \times 2 \times 8}{100}=₹ 160$
The interest at the end of 3 rd year $=\frac{1000 \times 3 \times 8}{100}=₹ 240$
The interests are $80,160,240, \ldots .$.
The interests form an AP with $a=80, d=80$
The interest at the end of 30 years $=a_{30}=a+29 d$
$=80+29 \times 80=₹ 2400$
Example-10: In a flower bed, there are 23 rose plants in the first row, 21 in the second, 19 in the third, and so on. There are 5 rose plants in the last row. How many rows are there in the flower bed?

Sol: The number of rose plants in the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots$. rows are
$23,21,19, \ldots . . ., 5$ Clearly it is an AP
$a=23, d=21-23=-2$

Let $a_{n}=5 \Rightarrow a+(n-1) d=5$
$23+(n-1) \times(-2)=5$
$(n-1) \times(-2)=5-23=-18$
$n-1=\frac{-18}{-2}=9$
$n=9+1=10$
So, there are 10 rows in the flower bed.

Exercise - 6.2

1. Fill in the blanks in the following table, given that a is the first term, d the common difference and a_{n} the $n^{\text {th }}$ term of the AP:
(i) $\quad a=7, d=3, n=8, a_{n}=$?

Sol: $a_{n}=a+(n-1) d$

$$
\begin{aligned}
& =7+(8-1) \times 3 \\
& =7+7 \times 3 \\
& =7+21=28
\end{aligned}
$$

(ii) $a=-18, d=?, n=10, a_{n}=0$

Sol: $a_{n}=0$

$$
\begin{aligned}
& a+(n-1) d=0 \\
& -18+(10-1) d=0 \\
& 9 d=18 \\
& d=\frac{18}{9}=2
\end{aligned}
$$

(iii) $a=$?, $d=-3, n=18, a_{n}=-5$

Sol: $a_{n}=-5$
$a+(n-1) d=-5$
$a+(18-1) \times(-3)=-5$
$a+17 \times(-3)=-5$
$a-51=-5$
$a=-5+51=46$
(iv) $a=-18.9, d=2.5, n=$?,$a_{n}=3.6$

Sol: $a_{n}=3.6$

$$
\begin{aligned}
& a+(n-1) d=3.6 \\
& -18.9+(n-1) \times(2.5)=3.6 \\
& (n-1) \times(2.5)=3.6+18.9 \\
& n-1=\frac{22.5}{2.5}=9
\end{aligned}
$$

$$
n=9+1=10
$$

(v) $a=3.5, d=0, n=105, a_{n}=$?

Sol: $a_{n}=a+(n-1) d$

$$
=3.5+(105-1) \times 0=3.5
$$

2. (i) Find the $30^{\text {th }}$ term of the A.P $10,7,4, \ldots . . .$.

Sol: Given A.P is $10,7,4, \ldots$.
$a=10, d=7-10=-3$
$30^{\text {th }}$ term of the A. $\mathrm{P}=a+29 d$
$=10+29 \times(-3)$
$=10-87=-77$
(ii) Find the $11^{\text {th }}$ term of the A.P: $-3, \frac{-1}{2}, 2, \ldots .$.

Sol: Given A.P is $-3, \frac{-1}{2}, 2, \ldots$..
$a=-3, \quad d=a_{2}-a_{1}=\frac{-1}{2}-(-3)=\frac{-1}{2}+3=\frac{-1+6}{2}=\frac{5}{2}$
$11^{\text {th }}$ term of the $\mathrm{A} \cdot \mathrm{P}=a+10 d$
$=-3+10 \times\left(\frac{5}{2}\right)$
$=-3+25=22$
3. Find the respective terms for the following APs.
(i) $a_{1}=2, a_{3}=26$ find a_{2}

Sol: $\quad a_{1}=a=2$
$a_{3}=a+2 d=26$
$\Rightarrow 2+2 d=26$
$\Rightarrow 2 d=26-2$
$\Rightarrow d=\frac{24}{2}=12$
Now $a_{2}=a+d=2+12=14$
(ii) $a_{2}=13, a_{4}=3$ find a_{1}, a_{3}

Sol: $a_{2}=a+d=13 \rightarrow$ (1)
$a_{4}=a+3 d=3 \rightarrow(2)$

Short cut:

$$
a_{2}=\frac{a_{1}+a_{3}}{2}=\frac{2+26}{2}=\frac{28}{2}=14
$$

Shortcut:

$$
\begin{gathered}
a_{3}=\frac{a_{2}+a_{4}}{2}=\frac{13+3}{2}=\frac{16}{2}=8 \\
a_{1}=2 a_{2}-a_{3}=26-8=18
\end{gathered}
$$

(2)-(1) $\Rightarrow a+3 d=3$
$a+d=13$
$(-)(-)(-)$
$d=\frac{2 d=-10}{\frac{-10}{2}=-5}$
Substitute $d=-5$ in (1)
$a-5=13$
$a=13+5=18$
Now $a_{1}=a=18$
$a_{3}=a+2 d=13+2(-5)=18-10=8$
(iii) $a_{1}=5 ; a_{4}=9 \frac{1}{2}$ find a_{2}, a_{3}

Sol: $a_{1}=a=5$
$a_{4}=a+3 d=\frac{19}{2}$
$5+3 d=\frac{19}{2}$
$3 d=\frac{19}{2}-5=\frac{19-10}{2}=\frac{9}{2}$
$d=\frac{9}{2 \times 3}=\frac{3}{2}$
$a_{2}=a+d=5+\frac{3}{2}=\frac{13}{2}$
$a_{3}=a+2 d=5+2 \times \frac{3}{2}=5+3=8$
(iv) $a_{1}=-4 ; a_{6}=6$ find $a_{2}, a_{3}, a_{4}, a_{5}$

Sol: $a_{1}=-4 \Rightarrow a=-4$
$a_{6}=6 \Rightarrow a+5 d=6$
$-4+5 d=6$
$5 d=6+4=10$
$d=\frac{10}{5}=2$
$a_{2}=a+d=-4+2=-2$
$a_{3}=a+2 d=-4+2 \times 2=-4+4=0$
$a_{4}=a+3 d=-4+3 \times 2=-4+6=2$
$a_{5}=a+4 d=-4+4 \times 2=-4+8=4$
(v) $a_{2}=38 ; a_{6}=-22$ find $a_{1}, a_{3}, a_{4}, a_{5}$

Sol: $a_{2}=38 \Rightarrow a+d=38 \rightarrow$ (1)
$a_{6}=-22 \Rightarrow a+5 d=-22 \rightarrow$ (2)
(2) $-(1) \Rightarrow a+5 d=-22$

\[

\]

$$
d=\frac{-60}{4}=-15
$$

Substitute $d=-15$ in (1)
$a-15=38$
$a=38+15=53$
$a_{1}=a=53$
$a_{3}=a+2 d=53+2(-15)=53-30=23$
$a_{3}=a+2 d=53+3(-15)=53-45=8$
$a_{3}=a+2 d=53+2(-15)=53-60=-7$
4. Which term of the AP : $3,8,13,18, \ldots$, is 78 ?

Sol: given A.P: $3,8,13,18, .$.
$a=3 ; d=8-3=5$
let $a_{n}=78$
$a+(n-1) d=78$
$3+(n-1) \times 5=78$
$(n-1) \times 5=78-3=75$
$n-1=\frac{75}{5}=15$
$n=15+1=16$
$\therefore 78$ is the $16^{\text {th }}$ term of A.P
5. Find the number of terms in each of the following APs :
(i) $7,13,19, \ldots, 205$

Sol: $\quad a=7, d=13-7=6$
let $a_{n}=205$
$a+(n-1) d=205$
$7+(n-1) \times 6=205$
$(n-1) \times 6=205-7=198$
$n-1=\frac{198}{6}=33$
$n=33+1=34$
The number of terms in given A.P are 34 .
(ii) $18,15 \frac{1}{2}, 13, \ldots \ldots,-47$

Sol: $a=18$,
$d=\frac{31}{2}-18=\frac{31-36}{2}=\frac{-5}{2}$
let $a_{n}=-47$
$a+(n-1) d=-47$
$18+(n-1) \times\left(\frac{-5}{2}\right)=-47$
$(n-1) \times\left(\frac{-5}{2}\right)=-47-18$
$(n-1) \times\left(\frac{-5}{2}\right)=-65$
$n-1=-65 \times \frac{-2}{5}=26$
$n=26+1=27$
The number of terms in given A.P are 27.
6. Check whether, -150 is a term of the AP : $11,8,5,2 \ldots$

Sol: $a=11, d=8-11=-3$
let $a_{n}=-150$
$a+(n-1) d=-150$
$11+(n-1) \times(-3)=-150$
$(n-1) \times(-3)=-150-11=-161$
$n-1=\frac{-161}{-3}=\frac{161}{3}$ it is not a natural number
$\therefore-150$ is not a term of given AP
7. Find the $31^{\text {st }}$ term of an AP whose $11^{\text {th }}$ term is 38 and the $16^{\text {th }}$ term is 73.

Sol: $11^{\text {th }}$ term is $38 \Rightarrow a+10 d=38 \rightarrow$ (1)
$16^{\text {th }}$ term is $73 \Rightarrow a+15 d=73 \rightarrow$ (2)
(2) $-(1) \Rightarrow a+15 d=73$
$a+10 d=38$
$5 d=35 \Rightarrow d=\frac{35}{5}=7$
Substitute d=7 in (1)
$a+10 \times 7=38$
$a=38-70=-32$
$31^{\text {st }}$ term $=a+30 d$
$=-32+30 \times 7$
$=-32+210$
$=178$
8. If the $3^{\text {rd }}$ and the $9^{\text {th }}$ terms of an AP are 4 and -8 respectively, which term of this AP is zero?

Sol: $3^{\text {rd }}$ term of an $\mathrm{A} . \mathrm{P}=4 \Rightarrow a+2 d=4 \rightarrow$ (1)
$9^{\text {th }}$ term of an A.P $=-8 \Rightarrow a+8 d=-8 \rightarrow(2)$
(2) $-(1) \Rightarrow a+8 d=-8$

$$
\begin{gathered}
a+2 d=4 \\
(-)(-) \quad(-)
\end{gathered}
$$

$$
\begin{gathered}
\overline{6 d=-12} \\
d=\frac{-12}{6}=-2
\end{gathered}
$$

Substitute $d=-2$ in (1) we get
$a+2 \times(-2)=4$
$a-4=4$
$a=4+4=8$
let $a_{n}=0$
$a+(n-1) d=0$
$8+(n-1) \times(-2)=0$
$(n-1) \times(-2)=0-8$
$n-1=\frac{-8}{-2}=4$
$n=4+1=5$
\therefore The $5^{\text {th }}$ term of A.P is ' 0 '
9. The $17^{\text {th }}$ term of an AP exceeds its $10^{\text {th }}$ term by 7 . Find the common difference.

Sol: $17^{\text {th }}$ term of an $\mathrm{AP}=10^{\text {th }}$ term +7
$a+16 d=a+9 d+7$
$a+16 d-a-9 d=7$
$7 d=7 \Rightarrow d=1$
The common difference $=1$
10. Two APs have the same common difference. The difference between their 100 th terms is 100 , what is the difference between their 1000th terms?

Sol: Let the first A.P is $a, a+d, a+2 d, a+3 d, \ldots .$.
The second A.P is $b, b+d, b+2 d, b+3 d, \ldots \ldots$.
The difference between their 100th terms $=100$
$a_{100}-b_{100}=100$
$(a+99 d)-(b+99 d)=100$
$a+99 d-b-99 d=100$
$a-b=100 \rightarrow$ (1)
The difference between their 1000th terms $=a_{1000}-b_{1000}$
$=(a+999 d)-(b+999 d)$
$=a+99 d-b-99 d$
$=a-b$
$=100$ (from (1))
11. How many three-digit numbers are divisible by 7 ?

Sol: The three-digit numbers are divisible by 7 are
105,112, 119, \qquad 994
$a=105, d=7$
let $a_{n}=994$
$a+(n-1) d=994$
$105+(n-1) \times 7=994$
$(n-1) \times 7=994-105=889$
$n-1=\frac{889}{7}=127$
$n=127+1=128$
$\therefore 128$ three digit numbers are divisible by 7
12. How many multiples of 4 lie between 10 and 250 ?

Sol: Multiples of 4 lie between 10 and 250 are
12,16,20 ,248
$a=12, d=4$
let $a_{n}=248$
$a+(n-1) d=248$
$12+(n-1) \times 4=248$
$(n-1) \times 4=248-12=236$
$n-1=\frac{236}{4}=59$
$n=59+1=60$
$\therefore 60$ multiples of 4 lie between 10 and 250 .
13. For what value of n, are the $n^{\text {th }}$ terms of two APs: $63,65,67, \ldots$ and $3,10,17, \ldots$ equal?

Sol: First A.P : 63,65,67,....

$$
\begin{aligned}
& a=63, d=2 \\
& \begin{aligned}
a_{n} & =a+(n-1) d \\
& =63+(n-1) \times 2 \\
& =63+2 n-2 \\
& =2 n+61
\end{aligned}
\end{aligned}
$$

Second A.P: 3,10,17,.....

$$
\begin{aligned}
a= & 3, d=7 \\
a_{n} & =a+(n-1) d \\
& =3+(n-1) \times 7 \\
& =3+7 n-7 \\
& =7 n-4
\end{aligned}
$$

If $\mathrm{n}^{\text {th }}$ terms of two A.Ps are equal then

$$
\begin{aligned}
& 7 n-4=2 n+61 \\
& 7 n-2 n=61+4 \\
& 5 n=65 \\
& n=\frac{65}{5}=13
\end{aligned}
$$

$\therefore 13^{\text {th }}$ terms of the two A.Ps are equal.
14. Determine the AP whose third term is 16 and the $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 .

Sol: Third term of $\mathrm{AP}=16 \Rightarrow a+2 d=16 \rightarrow$ (1)
$7^{\text {th }}$ term $=5^{\text {th }}$ term +12
$a+6 d=a+4 d+12$
$a+6 d-a-4 d=12$
$2 d=12$
$d=6$
Substitute $d=6$ in (1) we get
$a+2 \times 6=16$
$a=16-12=4$
The required AP is $a, a+d, a+2 d, a+3 d, \ldots$.
$\Rightarrow 4,10,16,22, \ldots \ldots$
15. Find the 20th term from the end of the AP : $3,8,13, \ldots, 253$

Sol: $a=3, d=8-3=5$
let $a_{n}=l=253$
$a+(n-1) d=253$
$3+(n-1) \times 5=253$
$(n-1) \times 5=253-3=250$
$n-1=\frac{250}{5}=50$
$n=50+1=51$
The $20^{\text {th }}$ term from the end of the $\mathrm{AP}=(51-20)+1=32^{\text {th }}$ term from first
$=a+31 d=3+31 \times 5=3+155=158$
$a=3, \quad d=8-3=5$
$a_{n}=l=253$
$\mathrm{n}^{\text {th }}$ term from the end of the AP $=l-(n-1) d$
$20^{\text {th }}$ term from the end of the $\mathrm{AP}=253-19 \times 5=253-95=158$
16. The sum of the $4^{\text {th }}$ and $8^{\text {th }}$ terms of an AP is 24 and the sum of the $6^{\text {th }}$ and $10^{\text {th }}$ terms is 44 . Find the first three terms of the AP.

Sol: $4^{\text {th }}$ term $+8^{\text {th }}$ term of an $\mathrm{AP}=24$

$$
\begin{aligned}
& \Rightarrow a+3 d+a+7 d=24 \\
& \Rightarrow 2 a+10 d=24 \\
& \Rightarrow a+5 d=12 \rightarrow \text { (1) }
\end{aligned}
$$

$6^{\text {th }}$ term $+10^{\text {th }}$ term of an $\mathrm{AP}=44$

$$
\begin{aligned}
& \Rightarrow a+5 d+a+9 d=44 \\
& \Rightarrow 2 a+14 d=44 \\
& \Rightarrow a+7 d=22 \rightarrow(2)
\end{aligned}
$$

(2) $-(1) \Rightarrow a+7 d=22$

$$
\begin{gathered}
a+5 d=12 \\
\frac{(-)(-) \quad(-)}{} \\
\hline 2 d=10
\end{gathered}
$$

$$
d=5
$$

Substitute $\mathrm{d}=5$ in (1) we get
$a+5 \times 5=12$
$a=12-25$
$a=-13$
\therefore The first three terms of AP are $a, a+d, a+2 d$
$\Rightarrow-13,-13+5,-13+10$
$\Rightarrow-13,-8,-3$
17. Subba Rao started work in 1995 at an annual salary of $₹ 5000$ and received an increment of 200 each year. In which year did his income reach ₹ 7000 ?

Sol: subbarao salary in $1995=₹ 5000$, Increment $=₹ 200$
Salary in $1996=5000+200=₹ 5200$
Salary in 1997=5200+200=₹5400
Salary in 1998=5400+200=₹5600
The salaries are ₹ 5000 , ₹ 5200 , ₹ 5400 , ₹ 5600 \qquad forms an AP
$a=5000, d=200$
Let $a_{n}=7000$
$a+(n-1) \times 200=7000$
$5000+(n-1) \times 200=7000$
$(n-1) \times 200=7000-5000=2000$
$n-1=\frac{2000}{200}=10$
$n=10+1$
$n=11$
\therefore In $11^{\text {th }}$ year subbarao income reached 7000
SUM OF FIRST n TERMS IN ARITHMETIC PROGRESSION:
i. If first term of an AP is \boldsymbol{a} and common difference is \boldsymbol{d} then

Sum of first n terms $=S_{n}=\frac{n}{2}[2 a+(n-1) d]$
ii. If first term is \boldsymbol{a}, last term is \boldsymbol{l} and number of terms is \boldsymbol{n} then
$S_{n}=\frac{n}{2}(a+l)$
iii. $\quad a_{n}=S_{n}-S_{n-1}$

Do This

Find the sum of indicated number of terms in each of the following A.P.s
(i) $16,11,6 \ldots, . . ., 23$ terms

Sol: $a=16, d=11-16=-5, n=23$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{23}{2}[2 \times 16+(23-1) \times(-5)]$
$=\frac{23}{2}[32+22(-5)]$
$=\frac{23}{2}[32-110]$
$=\frac{23}{2}(-78)$
$=23 \times(-39)$
$=-897$
(ii) $-0.5,-1.0,-1.5, ; 10$ terms

Sol: $\quad a=-0.5, d=-1.0+0.5=-0.5, n=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}[2 \times(-0.5)+(10-1) \times(-0.5)]$
$=5[-1+9 \times(-0.5)]$
$=5[-1-4.5]$
$=5 \times(-5.5)$
$=-27.5$
(iii) $-1, \frac{1}{4}, \frac{3}{2}, \ldots \ldots, 10$ terms

Sol: $a=-1, d=\frac{1}{4}+1=\frac{5}{2}, n=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}\left[2 \times(-1)+(10-1) \times \frac{5}{2}\right]$
$=5\left[-2+\frac{45}{2}\right]$
$=5 \times \frac{41}{2}$
$=\frac{205}{2}$
Example-11. If the sum of the first 14 terms of an AP is 1050 and its first term is 10 , find the $20^{\text {th }}$ term
Sol: $a=10, n=14$,
$S_{14}=1050$
$\frac{n}{2}[2 a+(n-1) d]=1050$
$\frac{14}{2}[2 \times 10+(14-1) d]=1050$
$7[20+13 d]=1050$
$20+13 d=\frac{1050}{7}=150$
$13 d=150-20$
$13 d=130$
$d=10$
$20^{\text {th }}$ term $=a+19 d$
$=10+19 \times 10=10+190=200$
Example-12. How many terms of the AP : 24, 21, $18, \ldots$ must be taken so that their sum is 78 ?
Sol: $a=24, d=21-24=-3$
Let $S_{n}=78$
$\frac{n}{2}[2 a+(n-1) d]=78$
$n[2 \times 24+(n-1)(-3)]=2 \times 78$
$n[48-3 n+3]=156$
$n[-3 n+51]=156$
$-3 n^{2}+51 n-156=0$
$3 n^{2}-51 n+156=0$
$n^{2}-17 n+52=0$
$(n-4)(n-13)=0$
$n-4=0$ or $n-13=0$
$n=4$ or 13
Example-13. (i) Find the sum of the first 1000 positive integers.
Sol: The first 1000 positive integers are 1,2,3,4,...., 1000
$a=1, d=1, n=1000$
$S_{n}=\frac{n}{2}[a+l]$
$S_{1000}=\frac{1000}{2}[1+1000]=500 \times 1001=500500$
(ii) Find the sum of the first n positive integers

Sol: $\quad a=1, d=1, n=n$
$S_{n}=\frac{n}{2}[a+l]=\frac{n}{2}(1+n)=\frac{n(n+1)}{2}$
The sum of the first n positive integers $=\frac{n(n+1)}{2}$
Example-14. Find the sum of first 24 terms of the list of numbers whose nth term is given by

$$
a_{n}=3+2 n
$$

Sol: $a_{n}=3+2 n$
$a_{1}=3+2 \times 1=3+2=5$
$a_{2}=3+2 \times 2=3+4=7$
$a_{3}=3+2 \times 3=3+6=9$
List of numbers are $5,7,9, \ldots \ldots$. clearly it is an AP
$a=5, d=7-5=2, n=24$
$S_{24}=\frac{24}{2}[2 \times 5+(24-1) \times 2]$
$S_{24}=\frac{24}{2}[10+(24-1) \times 2]$
$=12[10+23 \times 2]$
$=12 \times 56$
$=672$
Example-15. A manufacturer of TV sets produced 600 sets in the third year and 700 sets in the seventh year. Assuming that the production increases uniformly by a fixed number every year, find : (i) the production in the 1st year (ii) the production in the 10th year (iii) the total production in first 7 years.
Sol: $a_{3}=600, a_{7}=700$
$a_{7}=700 \Rightarrow a+6 d=700 \rightarrow$ (1)
$a_{3}=600 \Rightarrow a+2 d=600 \rightarrow$ (2)
$4 d=100$
$d=\frac{100}{4}=25$
Substitute $\mathrm{d}=25$ in (2)
$a+2 \times 25=600$
$a+50=600$
$a=600-50=550$
(i) The production in the 1st year $=550$
(ii) The production in the 10th year $=a+9 d$
$=550+9 \times 25$
$=550+225$
$=775$
(iii) The total production in first 7 years $=S_{7}$
$=\frac{7}{2}[2 \times 550+(7-1) \times 25]$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$=\frac{7}{2}[1100+6 \times 25]$
$=\frac{7}{2}[1250]=7 \times 625=4375$

Exercise-6.3

1. Find the sum of the following APs:
(i) $2,7,12, \ldots$, to 10 terms.

Sol: $a=2, d=7-2=5, n=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{10}=\frac{10}{2}[2 \times 2+(10-1) \times 5]$
$=5[4+45]$
$=5 \times 50$
$=250$
(ii) $-37,-33,-29, \ldots$, to 12 terms.

Sol: $a=-37, d=-33+37=4, n=12$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{12}=\frac{12}{2}[2 \times(-37)+(12-1) \times 4]$
$=6[-74+44]$
$=6 \times(-30)$
$=-180$
(iii) $0.6,1.7,2.8, \ldots$, to 100 terms

Sol: $a=0.6, d=1.7-0.6=1.1, n=100$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{100}=\frac{100}{2}[2 \times 0.6+(100-1) \times 1.1]$
$=50[1.2+99 \times 1.1]$
$=50[1.2+108.9]$
$=50 \times 110.1$
$=5505$
(iv) $\frac{1}{15}, \frac{1}{12}, \frac{1}{10}, \ldots \ldots$, to 11 terms

Sol: $a=\frac{1}{15}, d=\frac{1}{12}-\frac{1}{15}=\frac{5-4}{60}=\frac{1}{60}, n=11$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}[2 n+(n-1) d] \\
& S_{11}=\frac{11}{2}\left[2\left(\frac{1}{15}\right)+(11-1)\left(\frac{1}{60}\right)\right] \\
& =\frac{11}{2}\left[\frac{2}{15}+10 \times \frac{1}{60}\right] \\
& =\frac{11}{2}\left[\frac{2}{15}+\frac{1}{6}\right] \\
& =\frac{11}{2}\left[\frac{8+10}{60}\right] \\
& =\frac{11}{2} \times \frac{18}{60} \\
& =\frac{33}{20}=1 \frac{13}{20}
\end{aligned}
$$

2. Find the sums given below

(i) $7+10 \frac{1}{2}+14+\cdots+84$

Sol: $a=7, d=10 \frac{1}{2}-7=3 \frac{1}{2}=\frac{7}{2}, l=84$
$l=a_{n}=84$
$a+(n-1) d=84$
$7+(n-1)\left(\frac{7}{2}\right)=84$
$(n-1)\left(\frac{7}{2}\right)=84-7$
$n-1=77 \times \frac{2}{7}=22$
$n=22+1=23$
$S_{n}=\frac{n}{2}(a+l)$
$S_{23}=\frac{23}{2}(7+84)$
$=\frac{23}{2} \times 91$
$=\frac{2093}{2}=1046 \frac{1}{2}$
(ii) $34+32+30+\ldots+10$

Sol: $a=34, d=32-34=-2$
$l=a_{n}=10$
$34+(n-1)(-2)=10$
$(n-1)(-2)=10-34$
$(n-1)(-2)=-24$
$n-1=\frac{-24}{-2}=12$
$n=12+1=13$
$S_{n}=\frac{n}{2}(a+l)$
$S_{13}=\frac{13}{2}(34+10)$
$=\frac{13}{2} \times 44$
$=13 \times 22$
$=286$
(iii) $-5+(-8)+(-11)+\ldots+(-230)$

Sol: $\quad a=-5, d=-8+5=-3$
$l=a_{n}=-230$
$-5+(n-1)(-3)=-230$
$(n-1)(-3)=-230+5$
$(n-1)(-3)=-225$
$n-1=\frac{-225}{-3}=75$
$n=75+1=76$
$S_{n}=\frac{n}{2}(a+l)$
$S_{76}=\frac{76}{2}[-5+(-230)]$
$=38 \times(-235)$
$=-8930$
3. In an AP:
(i) Given $a=5, d=3, a_{n}=50$, find n and S_{n}.

Sol: $a_{n}=50$
$a+(n-1) d=50$
$5+(n-1) \times 3=50$
$(n-1) \times 3=50-5$
$(n-1) \times 3=45$
$n-1=\frac{45}{3}=15$
$n=15+1$
$n=16$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{16}=\frac{16}{2}[2 \times 5+(16-1) \times 3]$
$=8[10+15 \times 3]$
$=8[10+45]$
$=8 \times 55=440$
(ii) Given $a=7, a_{13}=35$, find d and S_{13}.

Sol: $a_{13}=35$
$a+12 d=35$
$7+12 d=35$
$12 d=35-7$
$12 d=28$
$d=\frac{28}{12}=\frac{7}{3}$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{13}=\frac{13}{2}\left[2 \times 7+(13-1) \times \frac{7}{3}\right]$
$=\frac{13}{2}\left[14+12 \times \frac{7}{3}\right]$
$=\frac{13}{2}[14+28]$
$=\frac{13}{2} \times 42=13 \times 21=273$
(iii) Given $a_{12}=37, d=3$, find a and S_{12}.

Sol: $a_{12}=37$
$a+11 d=37$
$a+11 \times 3=37$
$a+33=37$
$a=37-33=4$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{12}=\frac{12}{2}[2 \times 4+(12-1) \times 3]$
$=6[8+33]$
$=6 \times 41=246$
(iv) Given $a_{3}=15, S_{10}=125$, find d and a_{10}

Sol: $a_{3}=15$

$$
\begin{aligned}
& a+2 d=15 \Rightarrow a=15-2 d \rightarrow(1) \\
& S_{10}=125 \\
& \frac{10}{2}[2 a+(10-1) d]=125 \\
& {[2(15-2 d)+9 d]=\frac{125}{5}} \\
& 30-4 d+9 d=25 \\
& 5 d=25-30 \\
& d=\frac{-5}{5}=-1
\end{aligned}
$$

Substitute $d=-1$ in (1)
$a=15-2 \times(-1)=15+2=17$
$a_{n}=a+9 d$
$=17+9 \times(-1)$
$=17-9=8$
(v) Given $a=2, d=8, S_{n}=90$, find n and a_{n}.

Sol: $S_{n}=90$

$$
\begin{aligned}
& \frac{n}{2}[2 a+(n-1) d]=90 \\
& \frac{n}{2}[2 \times 2+(n-1) \times 8]=90 \\
& n[4+8 n-8]=90 \times 2 \\
& 4 n+8 n^{2}-8 n-180=0 \\
& 8 n^{2}-4 n-180=0 \\
& 2 n^{2}-n-45=0 \\
& 2 n^{2}-10 n+9 n-45=0 \\
& 2 n(n-5)+9(n-5)=0 \\
& (n-5)(2 n+9)=0 \\
& n-5=0 \text { or } 2 n+9=0
\end{aligned}
$$

$n=5$ or $n=\frac{-9}{2}$
$\therefore n=5$ (n is a natural number)

$$
\begin{aligned}
a_{n} & =a_{5}=a+4 d \\
& =2+4 \times 8=2+32=34
\end{aligned}
$$

(vi) Given $a_{n}=4, d=2, S_{n}=-14$, find n and a.

Sol: $a_{n}=4$
$a+(n-1) d=4$
$a+(n-1) \times 2=4$
$a+2 n-2=4$
$a=4-2 n+2$
$a=6-2 n \rightarrow$ (1)
$S_{n}=-14$
$\frac{n}{2}\left[a+a_{n}\right]=-14$
$n[6-2 n+4]=-14 \times 2$
$n[10-2 n]=-28$
$10 n-2 n^{2}+28=0$
$-2 n^{2}+10 n+28=0$
$n^{2}-5 n-14=0$
$(n-7)(n+2)=0$
$n-7=0$ or $n+2=0$
$n=7$ or $n=-2$
$\therefore n=7$ (n is a natural number)
From (1)
$a=6-2 \times 7=6-14=-8$
(vii) Given $l=28, S=144$, and there are total 9 terms. Find a.

Sol: $l=a_{n}=28, S=144, n=9$
$S=144$
$\frac{n}{2}[a+l]=144$
$\frac{9}{2}[a+28]=144$
$a+28=\frac{144 \times 2}{9}$
$a=32-28=4$
4. The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9 ,
how many terms are there and what is their sum?
Sol: $a=17, d=9$ and $l=a_{n}=350$
$a_{n}=350$
$a+(n-1) d=350$
$17+(n-1) \times 9=350$
$(n-1) \times 9=350-17$
$n-1=\frac{333}{9}=37$
$n=37+1=38$
$S_{n}=\frac{n}{2}(a+l)$
$=\frac{38}{2}(17+350)$
$=19 \times 367=6973$
There are 38 terms and their sum is 6973 .
5. Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Sol: $a_{2}=14 \Rightarrow a+d=14 \rightarrow$ (1)
$a_{3}=18 \Rightarrow a+2 d=18 \rightarrow$ (2)
(2) - (1) $\Rightarrow a+2 d=18$

$$
\begin{gathered}
a+d=14 \\
(-)(-)(-) \\
\hline d=4
\end{gathered}
$$

Substitute $\mathrm{d}=4$ in (1)

$$
\begin{aligned}
& a+4=14 \\
& a=14-4=10 \\
& S_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& S_{51}=\frac{51}{2}[2 \times 10+(51-1) \times 4] \\
& \quad=\frac{51}{2}[20+50 \times 4] \\
& \\
& \quad=\frac{51}{2} \times 220 \\
& \\
& \quad=51 \times 110 \\
& \\
& =5610
\end{aligned}
$$

6. If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289 , find the sum of first n terms.

Sol: $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
S_{7}=49 & \Rightarrow \frac{7}{2}[2 a+(7-1) d]=49 \\
\Rightarrow & {[2 a+6 d]=\frac{2 \times 49}{7} } \\
\Rightarrow & 2 a+6 d=14 \\
\Rightarrow & a+3 d=7 \rightarrow(1) \\
S_{17}=289 & \Rightarrow \frac{17}{2}[2 a+(17-1) d]=289 \\
\Rightarrow & {[2 a+16 d]=\frac{2 \times 289}{17} } \\
\Rightarrow & 2 a+16 d=34 \\
\Rightarrow & a+8 d=17 \rightarrow(2) \\
(2)-(1) & \Rightarrow a+8 d=17 \\
& \frac{(-)+3 d=7}{5 d=10} \\
& \frac{d=2}{}
\end{aligned}
$$

Shortcut:

$$
\begin{gathered}
S_{7}=49=7^{2} \\
S_{17}=289=17^{2} \\
\therefore S_{n}=n^{2}
\end{gathered}
$$

Substitute d=2 in (1)
$a+3 \times 2=7 \Rightarrow a+6=7 \Rightarrow a=1$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2 \times 1+(n-1) 2]$
$=\frac{n}{2}[2+2 n-2]$
$=\frac{n}{2} \times 2 n=n^{2}$
7. Show that $a_{1}, a_{2}, \ldots, a_{n}, \ldots$ form an AP where a_{n} is defined as below
(i) $a_{n}=3+4 n$

Sol: $a_{n}=3+4 n$

$$
\begin{aligned}
a_{1} & =3+4 \times 1=3+4=7 \\
a_{2} & =3+4 \times 2=3+8=11 \\
a_{3} & =3+4 \times 3=3+12=15 \\
a_{4} & =3+4 \times 4=3+16=19
\end{aligned}
$$

The list of terms are $7,11,15,19, \ldots .$.

$$
\begin{aligned}
& a_{2}-a_{1}=11-7=4 \\
& a_{3}-a_{2}=15-11=4 \\
& a_{4}-a_{3}=19-15=4 \\
& a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots
\end{aligned}
$$

i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP. $a=7, d=4$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{15} & =\frac{15}{2}[2 \times 7+(15-1) \times 4] \\
& =\frac{15}{2}[14+56] \\
& =\frac{15}{2} \times 70=15 \times 35=525
\end{aligned}
$$

(ii) $a_{n}=9-5 n$

Sol: $a_{n}=9-5 n$

$$
\begin{aligned}
& a_{1}=9-5 \times 1=9-5=4 \\
& a_{2}=9-5 \times 2=9-10=-1 \\
& a_{3}=9-5 \times 3=9-15=-6 \\
& a_{4}=9-5 \times 4=9-20=-11
\end{aligned}
$$

The list of terms is $4,-1,-6,-11, \ldots \ldots$
$a_{2}-a_{1}=-1-4=-5$
$a_{3}-a_{2}=-6+1=-5$
$a_{4}-a_{3}=-11+6=-5$
$a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\cdots$
i.e., $a_{k+1}-a_{k}$ is same every time

So, the given list of numbers forms an AP. $a=4, d=-5$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
S_{15} & =\frac{15}{2}[2 \times 4+(15-1) \times(-5)] \\
& =\frac{15}{2}[8-70] \\
& =\frac{15}{2} \times(-62)=15 \times(-31)=-465
\end{aligned}
$$

8. If the sum of the first n terms of an $A P$ is $4 n-n^{2}$, what is the first term? What is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10 th and the nth terms
Sol: $S_{n}=4 n-n^{2}$
$S_{1}=4 \times 1-1^{2}=4-1=3$
$S_{2}=4 \times 2-2^{2}=8-4=4$
$S_{3}=4 \times 3-3^{2}=12-9=3$
$S_{4}=4 \times 4-4^{2}=16-16=0$

$$
\begin{aligned}
& a_{1}=S_{1}=3 \\
& a_{2}=S_{2}-S_{1}=4-3=1 \\
& a_{3}=S_{3}-S_{2}=3-4=-1 \\
& \therefore a=3, d=a_{2}-a_{1}=1-3=-2 \\
& a_{10}=a+9 d=3+9 \times(-2)=3-18=-15 \\
& a_{n}=a+(n-1) d=3+(n-1) \times(-2)=3-2 n+2=5-2 n
\end{aligned}
$$

9. Find the sum of the first 40 positive integers divisible by 6.

Sol: The first 40 positive integers divisible by 6 are
$6 \times 1,6 \times 2,6 \times 3, \ldots \ldots \ldots, 6 \times 40$
$\Rightarrow 6,12,18, \ldots \ldots, 240$
$a=6, d=6, n=40, l=240$
$S_{n}=\frac{n}{2}[a+l]$
$S_{40}=\frac{40}{2}[6+240]$
$=20 \times 246=4920$

Shortcut:

$$
\begin{gathered}
S_{40}=6+12+18+\cdots . .+240 \\
=6(1+2+3+4+\cdots+40) \\
=6 \times \frac{40 \times 41}{2}=3 \times 1640=4920
\end{gathered}
$$

10. A sum of 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is 20 less than its preceding prize, find the value of each of the prizes.

Sol: Let the prizes be $x, x+20, x+40, x+60, x+80, x+100, x+120$
$a=x, d=20, l=x+120$
$S_{7}=700$
$\frac{7}{2}[x+x+120]=700$
$2 x+120=\frac{700 \times 2}{7}=200$
$2 x=200-120=80$
$x=40$
The prizes are ₹ 40 , ₹ 60 , ₹ 80 , ₹ 100 , ₹ 120 , ₹ 140 , ₹ 160 .
11. In a school, students thought of planting trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be the same as the class, in which they are studying, e.g., a section of Class I will plant 1 tree, a section of Class II will plant 2 trees and so on till Class XII. There are three sections of each class. How many trees will be planted by the students?

Sol: Trees planted by each class are
$3 \times 1,3 \times 2,3 \times 3, \ldots \ldots \ldots \ldots, 3 \times 12$
$\Rightarrow 3,6,9$,
$a=3, d=3, n=12, l=36$
$S_{n}=\frac{n}{2}[a+l]$
$S_{12}=\frac{12}{2}[3+36]=6 \times 39=234$
Total plants $=234$
12. A spiral is made up of successive semicircles, with centres alternately at A and B, starting with centre at A, of radii $0.5 \mathrm{~cm}, 1.0 \mathrm{~cm}, 1.5 \mathrm{~cm}, 2.0 \mathrm{~cm}, \ldots$ as shown in Fig. 5.4. What is the total length of such a spiral made up of thirteen consecutive semicircles? (Take $\pi=\frac{22}{7}$)
Sol: The radii are $0.5 \mathrm{~cm}, 1.0 \mathrm{~cm}, 1.5 \mathrm{~cm}, 2.0 \mathrm{~cm}, \ldots \ldots .$. these terms are in AP
$a=0.5, d=0.5, n=13$
$l_{1}=\pi \times r=\pi \times 0.5=\pi \times \frac{1}{2}=\frac{\pi}{2}$
$l_{2}=\pi \times 1=\pi, \quad l_{3}=\pi \times 1.5=\pi \times \frac{3}{2}=\frac{3 \pi}{2}, \ldots \ldots$
Total length of spiral $=l_{1}+l_{2}+l_{3}+\cdots .+l_{13}$
$=\frac{\pi}{2}+\pi+\frac{3 \pi}{2}+\cdots \ldots .13$ terms
$=\frac{\pi}{2}[1+2+3+\cdots 13$ terms $]$
$=\frac{\pi}{2}\left[\frac{13(13+1)}{2}\right]=\frac{\pi}{2}\left(\frac{13 \times 14}{2}\right)=\frac{\pi}{2} \times 91=\frac{22}{7} \times \frac{1}{2} \times 91=11 \times 13=143 \mathrm{~cm}$
13. 200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 in the row next to it and so on. In how may rows are the 200 logs placed and how many logs are in the top row?

Sol: The logs in rows are $20,19,18, \ldots \ldots$ is an AP
$a=20, d=-1$
$S_{n}=200$
$\frac{n}{2}[2 a+(n-1) d]=200$
$\frac{n}{2}[2 \times 20+(n-1) \times(-1)]=200$
$n[40-n+1]=200 \times 2$
$41 n-n^{2}-400=0$
$-n^{2}+41 n-400=0$
$n^{2}-41 n+400=0$
$(n-16)(n-25)=0$
$n-16=0$ or $n-25=0$
$n=16$ or $n=25$
$\therefore n=16$ (n cannot be 25)
The number of logs in the top row=16.
14. In a bucket and ball race, a bucket is placed at the starting point, which is 5 m from the first ball, and the other balls are placed 3 m apart in a straight line. There are ten balls in the line. A competitor starts from the bucket, picks up the nearest ball, runs back with it, drops it in the bucket, runs back to pick up the next ball, runs to the bucket to drop it in, and she continues in the same way until all the balls are in the bucket. What is the total distance the competitor has to run?

Sol: The distance of first ball (from bucket) $=5 \mathrm{~m}$
The distance of second ball $=5+3=8 \mathrm{~m}$
The distance of third ball $=8+3=11 \mathrm{~m}$
The distance of fourth ball $=11+3=14 \mathrm{~m}$

The distance of fourth ball $=11+3=14 \mathrm{~m}$
The distance covered the competitor for $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots$. Balls are
$2 \times 5 m, 2 \times 8 m, 2 \times 11 m, \ldots \ldots(10$ terms $)$
$10 m, 16 m, 22 m, \ldots \ldots \ldots$..... (10 terms) clearly these terms are in AP
$a=10, d=6, n=10$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{10}{2}[2 \times 10+(10-1) \times 6]$
$=5[20+54]$
$=5 \times 74=370 \mathrm{~m}$

GEOMETRIC PROGRESSIONS

1. A Geometric Progression is a list of numbers in which each term is obtained by multiplying preceding term with a fixed number. This fixed number is called common ratio ' r '
2. The first term is ' a ' and common ratio is ' r ' then the G.P is $a, a r, a r^{2}, a r^{3}, \ldots$..
3. $a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}, \ldots$.
4. $r=\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=$.
5. $a_{n}=a r^{n-1}$

Find which of the following are not G.P.

1. $6,12,24,48$,

Sol: $a_{1}=6, a_{2}=12, a_{3}=24, a_{4}=48 \ldots$.
$\frac{a_{2}}{a_{1}}=\frac{12}{6}=2$
$\frac{a_{3}}{a_{2}}=\frac{24}{12}=2$
$\frac{a_{4}}{a_{3}}=\frac{48}{24}=2$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\cdots$.
\therefore Given list of terms form a G.P
2. $1,4,9,16$,

Sol: $a_{1}=1, a_{2}=4, a_{3}=9, a_{4}=16 \ldots$.
$\frac{a_{2}}{a_{1}}=\frac{4}{1}=4$
$\frac{a_{3}}{a_{2}}=\frac{9}{4}=2.25$
$\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}$
\therefore Given list of terms not form a G.P
3. $1,-1,1,-1$,

Sol: $a_{1}=1, a_{2}=-1, a_{3}=1, a_{4}=-1 \ldots$.

$$
\begin{aligned}
& \frac{a_{2}}{a_{1}}=\frac{-1}{1}=-1 \\
& \frac{a_{3}}{a_{2}}=\frac{1}{-1}=-1 \\
& \frac{a_{4}}{a_{3}}=\frac{-1}{1}=-1 \\
& \frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\cdots
\end{aligned}
$$

\therefore Given list of terms form a G.P
4. $-4,-20,-100,-500$,

Sol: $a_{1}=-4, a_{2}=-20, a_{3}=-100, a_{4}=-500 \ldots .$.
$\frac{a_{2}}{a_{1}}=\frac{-20}{-4}=5$
$\frac{a_{3}}{a_{2}}=\frac{-100}{-20}=5$
$\frac{a_{4}}{a_{3}}=\frac{-500}{-100}=5$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\cdots$.
\therefore Given list of terms form a G.P
Example-16. Write the GP. if the first term $a=3$, and the common ratio $\mathrm{r}=2$.

Sol: The required G.P : $a, a r, a r^{2}, a r^{3}, \ldots$.

$$
\begin{aligned}
& \Rightarrow 3,3 \times 2,3 \times 2^{2}, 3 \times 2^{3}, \ldots \\
& \Rightarrow 3,6,12,24, \ldots \ldots
\end{aligned}
$$

Example-17. Write GP. if $a=256, r=\frac{\mathbf{- 1}}{2}$
Sol: The required G.P : $a, a r, a r^{2}, a r^{3}, \ldots .$.

$$
\begin{aligned}
& =256,256 \times\left(\frac{-1}{2}\right), 256 \times\left(\frac{-1}{2}\right)^{2}, 256 \times\left(\frac{-1}{2}\right)^{3}, \ldots \\
& =256,256 \times\left(\frac{-1}{2}\right), 256 \times \frac{1}{4}, 256 \times\left(\frac{-1}{8}\right), \ldots \\
& =256,-128,64,-32, \ldots
\end{aligned}
$$

Example-18. Find the common ratio of the GP 25, $-5,1, \frac{\mathbf{- 1}}{5}, \ldots$
Sol: $\quad r=\frac{a_{2}}{a_{1}}=\frac{-5}{25}=\frac{-1}{5}$
Example-19. Which of the following list of numbers form GP.?
(i) $3,6,12, \ldots \ldots$

Sol: $\frac{a_{2}}{a_{1}}=\frac{6}{3}=2$

$$
\begin{aligned}
& \frac{a_{3}}{a_{2}}=\frac{12}{6}=2 \\
& \frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots
\end{aligned}
$$

\therefore Given list of terms form a G.P
(ii) $64,-32,16$,.....

Sol: $\frac{a_{2}}{a_{1}}=\frac{-32}{64}=\frac{-1}{2}$
$\frac{a_{3}}{a_{2}}=\frac{16}{-32}=\frac{-1}{2}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
(iii) $\frac{1}{64}, \frac{1}{32}, \frac{1}{8}, \ldots$

Sol: $\frac{a_{2}}{a_{1}}=\frac{\frac{1}{32}}{\frac{1}{64}}=\frac{1}{32} \times \frac{64}{1}=2$

$$
\begin{aligned}
& \frac{a_{3}}{a_{2}}=\frac{\frac{1}{8}}{\frac{1}{32}}=\frac{1}{8} \times \frac{32}{1}=4 \\
& \frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}
\end{aligned}
$$

\therefore Given list of terms does not form G.P.

Exercise - 6.4

1. In which of the following situations, does the list of numbers involved in form a GP.?
(i) Salary of Sharmila, when her salary is ₹ $5,00,000$ for the first year and expected to receive yearly increase of 10%.

Sol: First year salary of sharmila $=a_{1}=₹ 5,00,000$
Second year salary of Sharmila $=a_{2}=₹ 5,00,000 \times \frac{110}{100}=₹ 5,50,000$
Third year salary of Sharmila $=a_{3}=₹ 5,50,000 \times \frac{110}{100}=₹ 6,05,000$
Fourth year salary of Sharmila $=a_{4}=₹ 6,05,000 \times \frac{110}{100}=₹ 6,65,500$
$\frac{a_{2}}{a_{1}}=\frac{₹ 5,50,000}{₹ 5,00,000}=\frac{11}{10}$
$\frac{a_{3}}{a_{2}}=\frac{₹ 6,05,000}{₹ 5,50,000}=\frac{11}{10}$
$\frac{a_{4}}{a_{3}}=\frac{₹ 6,65,500}{₹ 6,05,000}=\frac{11}{10}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\cdots$.
\therefore Given list of terms form a G.P
(ii) Number of bricks needed to make each step, if the stair case has total 30 steps. Bottom step needs 100 bricks and each successive step needs 2 brick less than the previous step.

Sol: The bricks needed to make 30 steps are
$100,100-2,100-4,100-6, \ldots \ldots$.
$=100,98,96,94, \ldots$.
Clearly this is not G.P. This is an A.P.
(iii) Perimeter of the each triangle, when the mid points of sides of an equilateral triangle whose side is 24 cm are joined to form another triangle, whose mid points in turn are joined to form still another triangle and the process continues indefinitely.

Sol: Perimeter of first triangle $=a_{1}=3 \times 24 \mathrm{~cm}=72 \mathrm{~cm}$
Perimeter of second triangle $=a_{2}=3 \times 12 \mathrm{~cm}=36 \mathrm{~cm}$

Perimeter of third triangle $=a_{3}=3 \times 6 \mathrm{~cm}=18 \mathrm{~cm}$
Perimeter of fourth triangle $=a_{4}=3 \times 3 \mathrm{~cm}=9 \mathrm{~cm}$
$\frac{a_{2}}{a_{1}}=\frac{36}{72}=\frac{1}{2}$
$\frac{a_{3}}{a_{2}}=\frac{18}{36}=\frac{1}{2}$
$\frac{a_{4}}{a_{3}}=\frac{9}{18}=\frac{1}{2}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\frac{a_{4}}{a_{3}}=\cdots$.
\therefore Given list of terms form a G.P
2. Write three terms of the GP when the first term ' a ' and the common ratio ' r ' are given?
(i) $\boldsymbol{a}=4 ; \boldsymbol{r}=\mathbf{3}$

Sol: GP: a, ar. $a r^{2}, \ldots$
$\Rightarrow 4,4 \times 3,4 \times 3^{2}, \ldots$
$\Rightarrow 4,12,36, \ldots$.
(ii) $a=\sqrt{5} ; r=\frac{1}{5}$

Sol: GP: $a, a r . a r^{2}, \ldots$
$\Rightarrow \sqrt{5}, \sqrt{5} \times \frac{1}{5}, \sqrt{5} \times\left(\frac{1}{5}\right)^{2}, \ldots$.
$\Rightarrow \sqrt{5}, \frac{\sqrt{5}}{5}, \frac{\sqrt{5}}{25}, \ldots$
(iii) $a=81 ; r=\frac{-1}{3}$

Sol: GP: $a, a r . a r^{2}, \ldots$
$\Rightarrow 81,81 \times\left(\frac{-1}{3}\right), 81 \times\left(\frac{-1}{3}\right)^{2}$,
$\Rightarrow 81,-\frac{81}{3}, \frac{81}{9}, .$.
$\Rightarrow 81,-27,9, \ldots$
(iv) $\boldsymbol{a}=\frac{\mathbf{1}}{64}$; $\boldsymbol{r}=\mathbf{2}$

Sol: GP: a ar. $a r^{2}, \ldots$
$\Rightarrow \frac{1}{64}, \frac{1}{64} \times 2, \frac{1}{64} \times 2^{2}, .$.
$\Rightarrow \frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \ldots$
3. Which of the following are GP? If they are GP. Write three more terms?
(i) $4,8,16 \ldots$.

Sol: $\frac{a_{2}}{a_{1}}=\frac{8}{4}=2$
$\frac{a_{3}}{a_{2}}=\frac{16}{8}=2$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
$a_{4}=a r^{3}=4 \times 2^{3}=4 \times 8=32$
$a_{5}=a r^{4}=4 \times 2^{4}=4 \times 16=64$
$a_{6}=a r^{5}=4 \times 2^{5}=4 \times 32=128$

Shortcut:

Next three terms are
$16 \times 2,16 \times 2^{2}, 16 \times 2^{3}$
$=32,64,128$

Next three terms are 32,64,128
(ii) $\frac{1}{3}, \frac{-1}{6}, \frac{1}{12}, \ldots$.

Sol: $\frac{a_{2}}{a_{1}}=\frac{\frac{-1}{6}}{\frac{1}{3}}=\frac{-1}{6} \times \frac{3}{1}=\frac{-1}{2}$
$\frac{a_{3}}{a_{2}}=\frac{\frac{1}{12}}{\frac{-1}{6}}=\frac{1}{12} \times \frac{6}{-1}=\frac{-1}{2}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P where $a=\frac{1}{3}, r=\frac{-1}{2}$
$a_{4}=a r^{3}=\frac{1}{3} \times\left(\frac{-1}{2}\right)^{3}=\frac{1}{3} \times \frac{-1}{8}=\frac{-1}{24}$
$a_{5}=a r^{4}=\frac{1}{3} \times\left(\frac{-1}{2}\right)^{4}=\frac{1}{3} \times \frac{1}{16}=\frac{1}{48}$
$a_{6}=a r^{5}=\frac{1}{3} \times\left(\frac{-1}{2}\right)^{5}=\frac{1}{3} \times \frac{-1}{32}=\frac{-1}{96}$
Next three terms are $\frac{-1}{24}, \frac{1}{48}, \frac{-1}{96}$
(iii) $5,55,555, \ldots$.

Sol: $\frac{a_{2}}{a_{1}}=\frac{55}{5}=11$
$\frac{a_{3}}{a_{2}}=\frac{555}{55}=\frac{111}{11}$
$\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}$
\therefore Given list of terms not form a G.P
(iv) $-2,-6,-18$.....

Sol: $\frac{a_{2}}{a_{1}}=\frac{-6}{-2}=3$

$$
\frac{a_{3}}{a_{2}}=\frac{-18}{-6}=3
$$

$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
Next three terms are $(-18) \times 3,(-18) \times 3^{2},(-18) \times 3^{3}$
$=-54,-162,-486$
(v) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots \ldots$

Sol: $\frac{a_{2}}{a_{1}}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{4} \times \frac{2}{1}=\frac{1}{2}$
$\frac{a_{3}}{a_{2}}=\frac{\frac{1}{6}}{\frac{1}{4}}=\frac{1}{6} \times \frac{4}{1}=\frac{2}{3}$
$\frac{a_{2}}{a_{1}} \neq \frac{a_{3}}{a_{2}}$
\therefore Given list of terms not form a G.P
(vi) $3,-3^{2}, 3^{3}, \ldots . .=3,-9,27, \ldots$

Sol: $\frac{a_{2}}{a_{1}}=\frac{-9}{3}=-3$
$\frac{a_{3}}{a_{2}}=\frac{27}{-9}=-3$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
Next three terms are $-3^{4}, 3^{5},-3^{6}$
(vii) $x, 1, \frac{1}{x}, \ldots$.

Sol: $\frac{a_{2}}{a_{1}}=\frac{1}{x}$
$\frac{a_{3}}{a_{2}}=\frac{\frac{1}{x}}{1}=\frac{1}{x}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
Next three terms are $\frac{1}{x^{2}}, \frac{1}{x^{3}}, \frac{1}{x^{4}}$
(viii) $\frac{1}{\sqrt{2}},-2, \frac{8}{\sqrt{2}}, \ldots$

Sol: $\frac{a_{2}}{a_{1}}=\frac{-2}{\frac{1}{\sqrt{2}}}=-2 \sqrt{2}$
$\frac{a_{3}}{a_{2}}=\frac{\frac{8}{\sqrt{2}}}{-2}=\frac{8}{-2 \sqrt{2}}=-2 \sqrt{2}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
Next three terms are $-16,32 \sqrt{2},-128$
(ix) $0.4,0.04,0.004, \ldots .$.

Sol: $\frac{a_{2}}{a_{1}}=\frac{0.04}{0.4}=\frac{1}{10}$
$\frac{a_{3}}{a_{2}}=\frac{0.004}{0.04}=\frac{1}{10}$
$\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=\cdots$.
\therefore Given list of terms form a G.P
Next three terms are $0.0004,0.00004,0.000004$
4. Find x so that $x, x+2, x+6$ are consecutive terms of a geometric progression.

Sol: $x, x+2, x+6$ are in GP
$\Rightarrow \frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}$
$\Rightarrow \frac{x+2}{x}=\frac{x+6}{x+2}$
$\Rightarrow(x+2)^{2}=x(x+6)$
$\Rightarrow x^{2}+4 x+4-x^{2}-6 x=0$
$\Rightarrow-2 x+4=0$
$\Rightarrow 2 x=4 \Rightarrow x=2$
$n^{\text {th }}$ term an of a GP with first term ' a ' and common ratio ' r ' is given by $a_{n}=a r^{n-1}$.
Example-20. Find the $20^{\text {th }}$ and $n^{\text {th }}$ term of the GP: $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$
Sol: $\quad a=\frac{5}{2}, r=\frac{a_{2}}{a_{1}}=\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{5}{4} \times \frac{2}{5}=\frac{1}{2}$
$20^{\text {th }}$ term $=a_{20}=a r^{19}$
$=\frac{5}{2} \times\left(\frac{1}{2}\right)^{19}=\frac{5}{2^{20}}$
$n^{\text {th }}$ term $=a_{n}=a r^{n-1}$

$$
=\frac{5}{2} \times\left(\frac{1}{2}\right)^{n-1}=\frac{5}{2^{n}}
$$

Example-21. Which term of the GP: $2,2 \sqrt{2}, 4 \ldots .$. is 128 ?
Sol: $a=2, \quad r=\frac{a_{2}}{a_{1}}=\frac{2 \sqrt{2}}{2}=\sqrt{2}$
let $a_{n}=128$
$a r^{n-1}=128$
$2 \times(\sqrt{2})^{n-1}=128$
(2) $\frac{n-1}{2}=\frac{128}{2}=64=2^{6}$
$\frac{n-1}{2}=6 \Rightarrow n-1=12 \Rightarrow n=13$
Hence 128 is the $13^{\text {th }}$ term of the GP
Example-22. In a GP the $3^{\text {rd }}$ term is 24 and $6^{\text {th }}$ term is 192 . Find the $10^{\text {th }}$ term.
Sol: $a_{3}=24 \Rightarrow a r^{2}=24 \rightarrow$ (1)
$a_{6}=192 \Rightarrow a r^{5}=192 \rightarrow$ (2)
(2) $\div(1) \Rightarrow \frac{a r^{5}}{a r^{2}}=\frac{192}{24}=8$
$\Rightarrow r^{3}=2^{3}$
$\Rightarrow r=2$
Substitute $r=2$ in (1) we get
$a \times 2^{2}=24$
$a \times 4=24$
$a=\frac{24}{4}=6$
$10^{\text {th }}$ term $=a r^{9}=6 \times 2^{9}=6 \times 512=3072$

Exercise-6.5

1. For each geometric progression find the common ratio ' r ', and then find a_{n}
(i) $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots \ldots$

Sol: $a=3, \quad r=\frac{a_{2}}{a_{1}}=\frac{\frac{3}{2}}{3}=\frac{3}{2 \times 3}=\frac{1}{2}$

$$
a_{n}=a r^{n-1}=3 \times\left(\frac{1}{2}\right)^{n-1}
$$

(ii) $2,-6,18,-54$

Sol: $a=3, \quad r=\frac{a_{2}}{a_{1}}=\frac{-6}{2}=-3$

$$
a_{n}=a r^{n-1}=3 \times(-3)^{n-1}
$$

(iii) $-1,-3,-9,-27 \ldots$....

Sol: $a=3, \quad r=\frac{a_{2}}{a_{1}}=\frac{-3}{-1}=3$

$$
a_{n}=a r^{n-1}=(-1) \times(3)^{n-1}
$$

(iv) $5,2, \frac{4}{5}, \frac{8}{25}, \ldots$

Sol: $a=5, \quad r=\frac{a_{2}}{a_{1}}=\frac{2}{5}$

$$
a_{n}=a r^{n-1}=5 \times\left(\frac{2}{5}\right)^{n-1}
$$

2. Find the $10^{\text {th }}$ and $\mathrm{n}^{\text {th }}$ term of GP. : 5, 25, 125,

Sol: $a=5, \quad r=\frac{a_{2}}{a_{1}}=\frac{25}{5}=5$

$$
\begin{aligned}
& a_{10}=a r^{9}=5 \times 5^{9}=5^{10} \\
& a_{n}=a r^{n-1}=5 \times 5^{n-1}=5^{n}
\end{aligned}
$$

3. Find the indicated term of each geometric Progression
(i) $\quad a_{1}=9 ; r=\frac{1}{3} ; \quad$ find a_{7}

Sol: $\quad a_{7}=a r^{6}=9 \times\left(\frac{1}{3}\right)^{6}=3^{2} \times \frac{1}{3^{6}}=\frac{1}{3^{4}}$
(ii) $\quad a_{1}=-12 ; r=\frac{1}{3} ; \quad$ find a_{6}

Sol: $\quad a_{6}=a r^{5}=-12 \times\left(\frac{1}{3}\right)^{5}=-4 \times 3 \times \frac{1}{3^{5}}=\frac{-4}{3^{4}}$
4. Which term of the GP.
(i) $2,8,32, \ldots .$. is 512 ?

Sol: $a=2, \quad r=\frac{a_{2}}{a_{1}}=\frac{8}{2}=4$
let $a_{n}=512$
$a r^{n-1}=512$
$2 \times 4^{n-1}=512$
$4^{n-1}=\frac{512}{2}=256=4^{4}$
$n-1=4 \Rightarrow n=5$
512 is the $5^{\text {th }}$ term of given GP.
(ii) $\sqrt{3}, 3,3 \sqrt{3}, \ldots \ldots$ is 729

Sol: $a=\sqrt{3}, \quad r=\frac{a_{2}}{a_{1}}=\frac{3}{\sqrt{3}}=\frac{\sqrt{3} \times \sqrt{3}}{\sqrt{3}}=\sqrt{3}$
let $a_{n}=729$
$a r^{n-1}=3^{7}$
$\sqrt{3} \times(\sqrt{3})^{n-1}=3^{6}$
$(\sqrt{3})^{n}=3^{6}$
$3^{\frac{n}{2}}=3^{6} \Rightarrow \frac{n}{2}=6 \Rightarrow n=12$
729 is the $12^{\text {th }}$ term of the given GP.
(iii) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} \ldots .$. is $\frac{1}{2187}$?

Sol: $a=\frac{1}{3}, \quad r=\frac{a_{2}}{a_{1}}=\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{9} \times \frac{3}{1}=\frac{1}{3}$
let $a_{n}=\frac{1}{2187}$
$a r^{n-1}=\frac{1}{2187}$
$\frac{1}{3} \times\left(\frac{1}{3}\right)^{n-1}=\left(\frac{1}{3}\right)^{7}$
$\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{7} \Rightarrow n=7$
$\frac{1}{2187}$ is the $7^{\text {th }}$ term of the GP
5. Find the $12^{\text {th }}$ term of a GP. whose $8^{\text {th }}$ term is 192 and the common ratio is 2 .

Sol: common ratio $(r)=2$
$8^{\text {th }}$ term $=192 \Rightarrow a r^{7}=192$
$a \times 2^{7}=192$
$a=\frac{192}{128}=\frac{3}{2}$
$12^{\text {th }}$ term $=a r^{11}=\frac{3}{2} \times 2^{11}=3 \times 2^{10}=3 \times 1024=3072$
6. The $4^{\text {th }}$ term of a geometric progression is $\frac{2}{3}$ and the $7^{\text {th }}$ term is $\frac{16}{81}$. Find the geometric series.

Sol: $4^{\text {th }}$ term $=23 \Rightarrow a r^{3}=\frac{2}{3} \quad \rightarrow$ (1)
$7^{\text {th }}$ term $=1681 \Rightarrow a r^{6}=\frac{16}{81} \rightarrow$ (2)
(2) $\div(1) \Rightarrow \frac{a r^{6}}{a r^{3}}=\frac{\frac{16}{81}}{\frac{2}{3}}=\frac{16}{81} \times \frac{3}{2}=\frac{8}{27}$
$r^{3}=\left(\frac{2}{3}\right)^{3} \Rightarrow r=\frac{2}{3}$
substitute $r=\frac{2}{3}$ in (1)
$a r^{3}=\frac{2}{3} \Rightarrow a \times\left(\frac{2}{3}\right)^{3}=\frac{2}{3}$
$\Rightarrow a=\frac{2}{3} \times \frac{27}{8}=\frac{9}{4}$
GP is $a, a r, a r^{2}, a r^{3}, \ldots .$.
$\Rightarrow \frac{9}{4}, \quad \frac{9}{4} \times \frac{2}{3}, \quad \frac{9}{4} \times\left(\frac{2}{3}\right)^{2}, \quad \frac{9}{4} \times\left(\frac{2}{3}\right)^{3}, \ldots$
$\Rightarrow \frac{9}{4}, \frac{3}{2}, 1, \frac{2}{3}, .$.
7. If the geometric progressions $162,54,18 \ldots \ldots$ and $\frac{2}{81}, \frac{2}{27}, \frac{2}{9}, \ldots$ have their nth term equal. Find the value of n.
Sol: $1^{\text {st }}$ GP: $162,54,18 \ldots$.
$a=162, \quad r=\frac{a_{2}}{a_{1}}=\frac{54}{162}=\frac{1}{3}$
$a_{n}=a r^{n-1}=162 \times\left(\frac{1}{3}\right)^{n-1}$
$2^{n d}$ GP: $\frac{2}{81}, \frac{2}{27}, \frac{2}{9}, \ldots$
$a=\frac{2}{81}, \quad r=\frac{a_{2}}{a_{1}}=\frac{\frac{2}{27}}{\frac{2}{81}}=\frac{2}{27} \times \frac{81}{2}=3$
$a_{n}=a r^{n-1}=\frac{2}{81} \times(3)^{n-1}$
Given their $\mathrm{n}^{\text {th }}$ terms are equal
$\Rightarrow \frac{2}{81} \times(3)^{n-1}=162 \times\left(\frac{1}{3}\right)^{n-1}$
$\Rightarrow(3)^{n-1} \times(3)^{n-1}=162 \times \frac{81}{2}=81 \times 81=3^{8}$
$\Rightarrow(3)^{2 n-2}=3^{8}$
$\Rightarrow 2 n-2=8$
$\Rightarrow 2 n=8+2=10$
$\Rightarrow n=5 \quad \therefore$ The $5^{\text {th }}$ terms of given two GPs are equal.

