1. An equation of the form $a x+b y+c=0$ where a, b, c are real numbers and where at least one of a or b is not zero (i.e. $a^{2}+b^{2} \neq 0$), is called a linear equation in two variables x and y
2. Two linear equations in the same two variables are called a pair of linear equations in two variables
$a_{1} x+b_{1} y+c_{1}=0\left(a_{1}{ }^{2}+b_{1}{ }^{2} \neq 0\right)$
$a_{2} x+b_{2} y+c_{2}=0\left(a_{2}^{2}+{b_{2}}^{2} \neq 0\right)$
3.

Comparison of ratios	Graphical representation	Algebraic interpretation	Solution	Graph
$\frac{\boldsymbol{a}_{\mathbf{1}}}{\boldsymbol{a}_{\mathbf{2}}} \neq \frac{\boldsymbol{b}_{\mathbf{1}}}{\boldsymbol{b}_{\mathbf{2}}}$	Intersecting lines	Consistent	Unique solution	
$\frac{\boldsymbol{a}_{\mathbf{1}}}{\boldsymbol{a}_{\mathbf{2}}}=\frac{\boldsymbol{b}_{\mathbf{1}}}{\boldsymbol{b}_{\mathbf{2}}} \neq \frac{\boldsymbol{c}_{\mathbf{1}}}{\boldsymbol{c}_{\mathbf{2}}}$	Parallel lines	In consistent	No solution	
$\frac{\boldsymbol{a}_{\mathbf{1}}}{\boldsymbol{a}_{\mathbf{2}}}=\frac{\boldsymbol{b}_{\mathbf{1}}}{\boldsymbol{b}_{\mathbf{2}}}=\frac{\boldsymbol{c}_{\mathbf{1}}}{\boldsymbol{c}_{\mathbf{2}}}$	Coincident lines	Consistent	Infinite number solutions	of

Example-1. Check whether the given pair of equations represent intersecting, parallel or coincident lines. Find the solution if the equations are consistent.
$2 \mathrm{x}+\mathrm{y}-5=0,3 \mathrm{x}-2 \mathrm{y}-4=0$
Sol: $\quad 2 \mathrm{x}+\mathrm{y}-5=0 \quad\left(a_{1}=2, \quad b_{1}=1, \quad c_{1}=-5\right)$

$$
3 x-2 y-4=0 \quad\left(a_{2}=3, \quad b_{2}=-2, \quad c_{2}=-4\right)
$$

$$
\frac{a_{1}}{a_{2}}=\frac{2}{3} ; \frac{b_{1}}{b_{2}}=\frac{1}{-2} ; \frac{c_{1}}{c}=\frac{-5}{-4}=\frac{5}{4}
$$

$$
\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
$$

\therefore Given pair of equations represent intersecting lines and hence, consistent pair of linear equations.

			$3 x-2 y-4=0 \Rightarrow 2 y=3 x-4 \Rightarrow y=\frac{3 x-4}{2}$		
			x	$y=\frac{3 x-4}{2}$	(x, y)
$2 x+y-5=0 \Rightarrow y=5-2 x$			0	$y=\frac{3(0)-4}{2}=\frac{0-4}{2}=\frac{-4}{2}=-2$	$(0,-2)$
x	$y=5-2 x$	(x, y)			
0	$y=5-2(0)=5-0=5$	$(0,5)$	2	$y=\frac{3(2)-4}{2}=\frac{6-4}{2}=\frac{2}{2}=1$	$(2,1)$
1	$y=5-2(1)=5-2=3$	$(1,3)$	4	$y=\frac{3(4)-4}{2}=\frac{12-4}{2}=\frac{8}{2}=4$	$(4,4)$
3	$y=5-2(3)=5-6=-1$	$(3,-1)$			
4	$y=5-2(4)=5-8=-3$	$(4,-3)$	6	$y=\frac{3(6)-4}{2}=\frac{18-4}{2}=\frac{14}{2}=7$	$(6,7)$

The unique solution of this pair of equations is $(2,1)$.

Example-2. Check whether the following pair of equations is consistent.
$3 x+4 y=2$ and $6 x+8 y=4$. Verify by a graphical representation.
Sol: $3 x+4 y-2=0\left(a_{1}=3, \quad b_{1}=4, \quad c_{1}=-2\right)$
$6 \mathrm{x}+8 \mathrm{y}-4=0\left(a_{2}=6, \quad b_{2}=8, \quad c_{2}=-4\right)$
$\frac{a_{1}}{a_{2}}=\frac{3}{6}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{4}{8}=\frac{1}{2} ; \frac{c_{1}}{c_{2}}=\frac{-2}{-4}=\frac{1}{2}$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
\therefore They are coincident lines. So, the pair of linear equations is dependent and have infinitely many solutions.

$3 x+4 y=2 \Rightarrow 4 y=2-3 x \Rightarrow y=\frac{2-3 x}{4}$		
x	$y=\frac{2-3 x}{4}$	(x, y)
-2	$y=\frac{2-3(-2)}{4}=\frac{2+6}{4}=\frac{8}{4}=2$	$(-2,2)$
2	$y=\frac{2-3(2)}{4}=\frac{2-6}{4}=\frac{-4}{4}=-1$	$(2,-1)$
4	$y=\frac{2-3(4)}{4}=\frac{2-12}{4}=\frac{-10}{4}=-2.5$	$(4,-2.5)$
6	$y=\frac{2-3(6)}{4}=\frac{2-18}{4}=\frac{-16}{4}=-4$	$(6,-4)$

$6 x+8 y=4 \Rightarrow 8 y=4-6 x \Rightarrow y=\frac{4-6 x}{8}$		
x	$y=\frac{4-6 x}{8}$	(x, y)
-2	$y=\frac{4-6(-2)}{8}=\frac{4+12}{8}=\frac{16}{8}=2$	$(-2,2)$
2	$y=\frac{4-6(2)}{8}=\frac{4-12}{8}=\frac{-8}{8}=-1$	$(2,-1)$
4	$y=\frac{4-6(4)}{8}=\frac{4-24}{8}=\frac{-20}{8}=-2.5$	$(4,-2.5)$
6	$y=\frac{4-6(6)}{8}=\frac{4-36}{8}=\frac{-32}{8}=-4$	$(6,-4)$

Example-3. Check whether the equations $2 x-3 y=5$ and $4 x-6 y=15$ are consistent. Also verify by graphical representation.
Sol: $2 x-3 y-5=0 ;\left(a_{1}=2, \quad b_{1}=-3, \quad c_{1}=-5\right)$
$4 x-6 y-15=0\left(a_{2}=4, \quad b_{2}=-6, \quad c_{2}=-15\right)$
$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{-3}{-6}=\frac{1}{2} ; \frac{c_{1}}{c_{2}}=\frac{-5}{-15}=\frac{1}{3}$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
So the equations are inconsistent. They have no solutions and its graph is of parallel lines.

$2 x-3 y=5 \Rightarrow 3 y=2 x-5 \Rightarrow y=\frac{2 x-5}{3}$		
x	$y=\frac{2 x-5}{3}$	(x, y)
-5	$y=\frac{2(-5)-5}{3}=\frac{-10-5}{3}=\frac{-15}{3}=-5$	$(-5,-5)$

-2	$y=\frac{2(-2)-5}{3}=\frac{-4-5}{3}=\frac{-9}{3}=-3$	$(-2,-3)$
4	$y=\frac{2(4)-5}{3}=\frac{8-5}{3}=\frac{3}{3}=1$	$(4,1)$
7	$y=\frac{2(7)-5}{3}=\frac{14-5}{3}=\frac{9}{3}=3$	$(7,3)$

$4 x-6 y=15 \Rightarrow 6 y=4 x-15 \Rightarrow y=\frac{4 x-15}{6}$		
x	$y=\frac{4 x-15}{6}$	(x, y)
-3	$y=\frac{4(-3)-15}{6}=\frac{-12-15}{6}=\frac{-27}{6}=\frac{-9}{2}=-4.5$	$(-3,-4.5)$
0	$y=\frac{4(0)-15}{6}=\frac{0-15}{6}=\frac{-15}{6}=-2.5$	$(0,-2.5)$
3	$y=\frac{4(3)-15}{6}=\frac{12-15}{6}=\frac{-3}{6}=-0.5$	$(3,-0.5)$
6	$y=\frac{4(6)-15}{6}=\frac{24-15}{6}=\frac{9}{6}=1.5$	$(6,1.5)$

(i) Solve graphically $2 x+3 y=1 ; \quad 3 x-y=7$

Sol: Given equations: $2 x+3 y-1=0 \quad a_{1}=2, b_{1}=3, c_{1}=-1$
$3 x-y-7=0 \quad a_{2}=3, b_{2}=-1, c_{2}=-7$
$\frac{a_{1}}{a_{2}}=\frac{2}{3} ; \quad \frac{b_{1}}{b_{2}}=\frac{3}{-1}=-3 \Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
\Rightarrow The given lines are intersecting lines, consistent pair of linear equation.

$2 x+3 y=1 \Rightarrow 3 y=1-2 x \Rightarrow y=\frac{1-2 x}{3}$		
x	$y=\frac{1-2 x}{3}$	(x, y)
-1	$y=\frac{1-2(-1)}{3}=\frac{1+2}{3}=\frac{3}{3}=1$	$(-1,1)$
-4	$y=\frac{1-2(-4)}{3}=\frac{1+8}{3}=\frac{9}{3}=3$	$(-4,3)$
2	$y=\frac{1-2(2)}{3}=\frac{1-4}{3}=\frac{-3}{3}=-1$	$(2,-1)$

$5 \quad y=\frac{1-2(5)}{3}=\frac{1-10}{3}=\frac{-9}{3}=-3$

$3 x-y=7 \Rightarrow y=3 x-7$		
x	$y=3 x-7$	(x, y)
0	$y=3(0)-7=0-7=-7$	$(0,-7)$
2	$y=3(2)-7=6-7=-1$	$(2,-1)$
4	$y=3(4)-7=8-7=1$	$(4,1)$
6	$y=3(6)-7=12-7=5$	$(6,5)$

The unique solution of this pair of equations is $(2,-1)$.
(ii) solve graphically $x+2 y=6$ and $2 x+4 y=12$

Sol: Given equations : $x+2 y-6=0 \quad\left(a_{1}=1, b_{1}=2, c_{1}=-6\right)$
$2 x+4 y-12=0 \quad\left(a_{2}=2, b_{2}=4, c_{2}=-12\right)$
$\frac{a_{1}}{a_{2}}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{-6}{-12}=\frac{1}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
\Rightarrow The given lines are parallele lines.

$x+2 y=6 \Rightarrow 2 y=6-x \Rightarrow y=\frac{6-x}{2}$		
x	$y=\frac{6-x}{2}$	(x, y)
0	$y=\frac{6-0}{2}=\frac{6}{2}=3$	$(0,3)$
2	$y=\frac{6-2}{2}=\frac{4}{2}=2$	$(2,2)$
4	$y=\frac{6-4}{2}=\frac{2}{2}=1$	$(4,1)$
-2	$y=\frac{6-(-2)}{2}=\frac{6+2}{2}=\frac{8}{2}=4$	$(-2,4)$

$2 x+4 y=12 \Rightarrow 4 y=12-2 x \Rightarrow y=\frac{12-2 x}{4}$		
x	$y=\frac{12-2 x}{4}$	(x, y)
2	$y=\frac{12-2(2)}{4}=\frac{12-4}{4}=\frac{8}{4}=2$	$(2,2)$
4	$y=\frac{12-2(4)}{4}=\frac{12-8}{4}=\frac{4}{4}=1$	$(4,1)$
6	$y=\frac{12-2(6)}{4}=\frac{12-12}{4}=\frac{0}{4}=0$	$(6,0)$

(iii) solve graphically $3 x+2 y=6$ and $6 x+4 y=18$

Sol: Given equations : $3 x+2 y-6=0 \quad a_{1}=3, b_{1}=2, c_{1}=-6$

$$
\begin{aligned}
& 6 x+4 y-18=0 \quad a_{2}=6, b_{2}=4, c_{2}=-18 \\
& \frac{a_{1}}{a_{2}}=\frac{3}{6}=\frac{1}{2} ; \frac{b_{1}}{b_{2}}=\frac{2}{4}=\frac{1}{2} ; \frac{c_{1}}{c_{2}}=\frac{-6}{-18}=\frac{1}{3} \\
& \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
\end{aligned}
$$

\Rightarrow The given lines are parallel lines. The equations have no solution.

$3 x+2 y=6 \Rightarrow 2 y=6-3 x \Rightarrow y=\frac{6-3 x}{2}$		
x	$y=\frac{6-3 x}{2}$	(x, y)
0	$y=\frac{6-3(0)}{2}=\frac{6-0}{2}=\frac{6}{2}=3$	$(0,3)$

2	$y=\frac{6-3(2)}{2}=\frac{6-6}{2}=\frac{0}{2}=0$	$(2,0)$
4	$y=\frac{6-3(4)}{2}=\frac{6-12}{2}=\frac{-6}{2}=-3$	$(4,-3)$
-2	$y=\frac{6-3(-2)}{2}=\frac{6+6}{2}=\frac{12}{2}=6$	$(-2,4)$

$6 x+4 y=18 \Rightarrow 4 y=18-6 x \Rightarrow y=\frac{18-6 x}{4}$		
x	$y=\frac{18-6 x}{4}$	(x, y)
1	$y=\frac{18-6(1)}{4}=\frac{18-6}{4}=\frac{12}{4}=3$	$(1,3)$
3	$y=\frac{18-6(3)}{4}=\frac{18-18}{4}=\frac{0}{4}=0$	$(3,0)$
-1	$y=\frac{18-6(-1)}{4}=\frac{18+6}{4}=\frac{24}{4}=6$	$(-1,6)$

Exercise - 4.1

2. Check whether the following equations are consistent or inconsistent. Solve them graphically.
a) $3 x+2 y=8 ; 2 x-3 y=1$

Sol: Given equations :

$$
\begin{aligned}
& 3 x+2 y-5=0 \quad a_{1}=3, b_{1}=2, c_{1}=-5 \\
& 2 x-3 y-7=0 \quad a_{2}=2, b_{2}=-3, c_{2}=-7 \\
& \frac{a_{1}}{a_{2}}=\frac{3}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{2}{-3} \Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}
\end{aligned}
$$

\Rightarrow The given equations are consistent. The pair of equations have one solution.

$3 x+2 y=8 \Rightarrow 2 y=8-3 x \Rightarrow y=\frac{8-3 x}{2}$		
x	$y=\frac{8-3 x}{2}$	(x, y)
-2	$y=\frac{8-3(-2)}{2}=\frac{8+6}{2}=\frac{14}{2}=7$	$(-2,7)$
0	$y=\frac{8-3(0)}{2}=\frac{8-0}{2}=\frac{8}{2}=4$	$(0,4)$
2	$y=\frac{8-3(2)}{2}=\frac{8-6}{2}=\frac{2}{2}=1$	$(4,-2)$
4	$y=\frac{8-3(4)}{2}=\frac{8-12}{2}=\frac{-4}{2}=-2$	

$2 x-3 y=1 \Rightarrow 3 y=2 x-1 \Rightarrow y=\frac{2 x-1}{3}$		
x	$y=\frac{2 x-1}{3}$	(x, y)
2	$y=\frac{2(2)-1}{3}=\frac{4-1}{3}=\frac{3}{3}=1$	$(2,1)$
5	$y=\frac{2(5)-1}{3}=\frac{10-1}{3}=\frac{9}{3}=3$	$(5,3)$
-1	$y=\frac{2(-1)-1}{3}=\frac{-2-1}{3}=\frac{-3}{3}=-1$	$(-1,-1)$
-4	$y=\frac{2(-4)-1}{3}=\frac{-8-1}{3}=\frac{-9}{3}=-3$	$(-4,-3)$

The unique solution of this pair of equations is $(2,1)$

b) $2 x-3 y=8 ; 4 x-6 y=9$

Sol: Given equations : $2 x-3 y-8=0 \quad a_{1}=2, b_{1}=-3, c_{1}=-8$

$$
4 x-6 y-9=0 \quad a_{2}=4, b_{2}=-6, c_{2}=-9
$$

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{-3}{-6}=\frac{1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{-8}{-9}=\frac{8}{9} \\
& \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
\end{aligned}
$$

\Rightarrow The given equations are inconsistent(parallel lines). The pair of equations have no solution.

$2 x-3 y=8 \Rightarrow 3 y=2 x-8 \Rightarrow y=\frac{2 x-8}{3}$		
x	$y=\frac{2 x-8}{3}$	(x, y)
7	$y=\frac{2(7)-8}{3}=\frac{14-8}{3}=\frac{6}{3}=2$	$(7,2)$
4	$y=\frac{2(4)-8}{3}=\frac{8-8}{3}=\frac{0}{3}=0$	$(4,0)$
-2	$y=\frac{2(-2)-8}{3}=\frac{-4-8}{3}=\frac{-12}{3}=-4$	$(-5,-6)$
-5	$y=\frac{2(-5)-8}{3}=\frac{-10-8}{3}=\frac{-18}{3}=-6$	

$4 x-6 y=9 \Rightarrow 6 y=4 x-9 \Rightarrow y=\frac{4 x-9}{6}$		
x	$y=\frac{4 x-9}{6}$	(x, y)
0	$y=\frac{4(0)-9}{6}=\frac{0-9}{6}=\frac{-9}{6}=-1.5$	$(0,-1.5)$
3	$y=\frac{4(3)-9}{6}=\frac{12-9}{6}=\frac{3}{6}=0.5$	$(3,0.5)$
6	$y=\frac{4(6)-9}{6}=\frac{24-9}{6}=\frac{15}{6}=2.5$	$(6,2.5)$
-3	$y=\frac{4(-3)-9}{6}=\frac{-12-9}{6}=\frac{-21}{6}=-3.5$	$(-3,-3)$

c) $\frac{3}{2} x+\frac{5}{3} y=7 ; \quad 9 x-10 y=12$

Sol: Given equations: $\frac{3}{2} x+\frac{5}{3} y-7=0$
$9 x+10 y-42=0 \quad a_{1}=9, \quad b_{1}=10, c_{1}=-42$
$9 x-10 y-12=0 \quad a_{2}=9, b_{2}=-10, c_{2}=-12$
$\frac{a_{1}}{a_{2}}=\frac{9}{9}=1 ; \quad \frac{b_{1}}{b_{2}}=\frac{10}{-10}=-1$
$\Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
\Rightarrow The given equations are consistent. The pair of equations has one solution.

$9 x+10 y=42 \Rightarrow 10 y=42-9 x \Rightarrow y=\frac{42-9 x}{10}$		
x	$y=\frac{42-9 x}{10}$	(x, y)

3	$y=\frac{42-9(3)}{10}=\frac{42-27}{10}=\frac{15}{10}=1.5$	$(3,1.5)$
8	$y=\frac{42-9(8)}{10}=\frac{42-72}{10}=\frac{-30}{10}=-3$	$(8,-3)$
-7	$y=\frac{42-9(-7)}{10}=\frac{42+63}{10}=\frac{105}{10}=10.5$	$(-7,10.5)$

$9 x-10 y=12 \Rightarrow 10 y=9 x-12 \Rightarrow y=\frac{9 x-12}{10}$		
x	$y=\frac{9 x-12}{10}$	(x, y)
3	$y=\frac{9(3)-12}{10}=\frac{27-12}{10}=\frac{15}{10}=1.5$	$(3,1.5)$
8	$y=\frac{9(8)-12}{10}=\frac{72-12}{10}=\frac{60}{10}=6$	$(8,6)$
-7	$y=\frac{9(-7)-12}{10}=\frac{-63-12}{10}=\frac{-75}{10}=-7.5$	$(-7,-7.5)$

(d) $5 x-3 y=11 ;-10 x+6 y=-22$

Sol: $5 x-3 y-11=0 \quad\left(a_{1}=5, \quad b_{1}=-3, \quad c_{1}=-11\right)$
$-10 x+6 y+22=0\left(a_{2}=-10, \quad b_{2}=6, \quad c_{2}=22\right)$
$\frac{a_{1}}{a_{2}}=\frac{5}{-10}=\frac{-1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{-3}{6}=\frac{-1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{-11}{22}=\frac{-1}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
\Rightarrow The given lines are coinsident lines. The equations have infinitely many solutions.

$$
5 x-3 y=11 \Rightarrow 3 y=5 x-11 \Rightarrow y=\frac{5 x-11}{3}
$$

x	$y=\frac{5 x-11}{3}$	(x, y)
-2	$y=\frac{5(-2)-11}{3}=\frac{-10-11}{3}=\frac{-21}{3}=-7$	$(-2,-7)$
1	$y=\frac{5(1)-11}{3}=\frac{5-11}{3}=\frac{-6}{3}=-2$	$(1,-2)$
4	$y=\frac{5(4)-11}{3}=\frac{20-11}{3}=\frac{9}{3}=3$	$(4,3)$
7	$y=\frac{5(7)-11}{3}=\frac{35-11}{3}=\frac{24}{3}=8$	$(7,8)$

$-10 x+6 y=-22 \Rightarrow 6 y=10 x-22 \Rightarrow y=\frac{10 x-22}{6}$		
x	$y=\frac{10 x-22}{6}$	(x, y)
-2	$y=\frac{10(-2)-22}{6}=\frac{-20-22}{6}=\frac{-42}{6}=-7$	$(-2,-7)$
1	$y=\frac{10(1)-22}{6}=\frac{10-22}{6}=\frac{-12}{6}=-2$	$(1,-2)$
4	$y=\frac{10(4)-22}{6}=\frac{40-22}{6}=\frac{18}{6}=3$	$(7,3)$
7	$y=\frac{10(7)-22}{6}=\frac{70-22}{6}=\frac{48}{6}=8$	

(e) $2 x+y-6=0 ; 4 x-2 y-4=0$

Sol: $2 x+y-6=0 \quad\left(a_{1}=2, \quad b_{1}=1, \quad c_{1}=-6\right)$

$$
4 x-2 y-4=0\left(a_{2}=4, \quad b_{2}=-2, \quad c_{2}=-4\right)
$$

$\frac{a_{1}}{a_{2}}=\frac{2}{4}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{1}{-2}=\frac{-1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{-6}{-4}=\frac{3}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$
\Rightarrow The given lines are intersecting lines. The equations have unique solution.

$2 x+y-6=0 \Rightarrow y=-2 x+6$		
x	$y=-2 x+6$	(x, y)
-2	$y=-2(-2)+6=4+6=10$	$(-2,10)$
1	$y=-2(1)+6=-2+6=4$	$(1,4)$
4	$y=-2(4)+6=-8+6=-2$	$(4,-2)$
6	$y==-2(6)+6=-12+6=-6$	$(6,-6)$

$4 x-2 y-4=0 \Rightarrow 2 y=4 x-4 \Rightarrow y=\frac{4 x-4}{2}=2 x-2$		
x	$y=2 x-2$	(x, y)
-2	$y=2(-2)-2=-4-2=-6$	$(-2,-6)$
1	$y=2(1)-2=2-2=0$	$(1,0)$
4	$y=2(4)-2=8-2=6$	$(4,6)$
5	$y=2(5)-2=10-2=8$	$(5,8)$

The unique solution of the equation is $(2,2)$
f) $x+y=5 ; 2 x+2 y=10$

Sol: $x+y-5=0 \quad\left(a_{1}=1, \quad b_{1}=1, \quad c_{1}=-5\right)$
$2 x+2 y-10=0\left(a_{2}=2, \quad b_{2}=2, \quad c_{2}=-10\right)$
$\frac{a_{1}}{a_{2}}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{-5}{-10}=\frac{1}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
\Rightarrow The given equations are consistent(coinsident lines). The pair of equations has infinitely many solutions.

$x+y=5 \Rightarrow y=5-x$		
x	$y=5-x$	(x, y)
0	$y=5-0=5$	$(0,5)$

2	$y=5-2=3$	$(2,3)$
4	$y=5-4=1$	$(4,1)$
-2	$y=5-(-2)=5+2=7$	$(-2,7)$

$2 x+2 y=10 \Rightarrow 2 y=10-2 x \Rightarrow y=\frac{10-2 x}{2}$		
x	$y=\frac{10-2 x}{2}$	(x, y)
0	$y=\frac{10-2(0)}{2}=\frac{10-0}{2}=\frac{10}{2}=5$	$(0,5)$
2	$y=\frac{10-2(2)}{2}=\frac{10-4}{2}=\frac{6}{2}=3$	$(2,3)$
-1	$y=\frac{10-2(-1)}{2}=\frac{10+2}{2}=\frac{12}{2}=6$	$(-1,6)$
1	$y=\frac{10-2(1)}{2}=\frac{10-2}{2}=\frac{8}{2}=4$	$(1,4)$

g) $x-y=8 ; 3 x-3 y=16$

Sol: $x-y-8=0 \quad\left(a_{1}=1, \quad b_{1}=-1, \quad c_{1}=-8\right)$
$3 x-3 y-16=0\left(a_{2}=3, \quad b_{2}=-3, \quad c_{2}=-16\right)$
$\frac{a_{1}}{a_{2}}=\frac{1}{3} ; \quad \frac{b_{1}}{b_{2}}=\frac{-1}{-3}=\frac{1}{3} ; \quad \frac{c_{1}}{c_{2}}=\frac{-8}{-16}=\frac{1}{2}$
$\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
\Rightarrow The given equations are inconsistent(parallel lines). The pair of equations have no solution.

$x-y=8 \Rightarrow y=x-8$		
x	$y=x-8$	(x, y)
0	$y=0-8=-8$	$(0,-8)$
2	$y=2-8=-6$	$(2,-6)$
4	$y=4-8=-4$	$(4,-4)$
-2	$y=-2-8=-10$	$(-2,-10)$

$3 x-3 y=16 \Rightarrow 3 y=3 x-16 \Rightarrow y=\frac{3 x-16}{3}$		
x	$y=\frac{3 x-16}{3}$	(x, y)
0	$y=\frac{3(0)-16}{3}=\frac{0-16}{3}=\frac{-16}{3}=-5.3$	$(0,-5.3)$
2	$y=\frac{3(2)-16}{3}=\frac{6-16}{3}=\frac{-10}{3}=-3.3$	$(2,-3.3)$
-4	$y=\frac{3(-4)-16}{3}=\frac{-12-16}{3}=\frac{-28}{3}=-9.3$	$(-4,-9.3)$
4	$y=\frac{3(4)-16}{3}=\frac{12-16}{3}=\frac{-4}{3}=-1.3$	$(4,-1.3)$

CHAPTER
4

1. An equation of the form $a x+b y+c=0$ where a, b, c are real numbers and where at least one of a or b is not zero (i.e. $a^{2}+b^{2} \neq 0$), is called a linear equation in two variables x and y
2. Two linear equations in the same two variables are called a pair of linear equations in two variables

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0\left(a_{1}^{2}+b_{1}^{2} \neq 0\right) \\
& a_{2} x+b_{2} y+c_{2}=0\left({a_{2}}^{2}+{b_{2}}^{2} \neq 0\right)
\end{aligned}
$$

3.

Comparison of ratios	Graphical representation	Algebraic interpretation	Solution	Graph
$\frac{\boldsymbol{a}_{\mathbf{1}}}{\boldsymbol{a}_{2}} \neq \frac{\boldsymbol{b}_{\mathbf{1}}}{\boldsymbol{b}_{\mathbf{2}}}$				

TRY THIS

1. For what value of ' p ' the following pair of equations has a unique solution. $2 x+p y=-5$ and $3 x+3 y=-6$

Sol: $2 x+p y=-5$
$2 x+p y+5=0 ; \quad a_{1}=2, b_{1}=p, c_{1}=5$
$3 x+3 y=-6$
$3 x+3 y+6=0 \quad ; \quad a_{2}=3, b_{2}=3, c_{2}=6$
If given pair of equations has unique solution then
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow \frac{2}{3} \neq \frac{p}{3} \Rightarrow p \neq 2$

Hence, given lines have unique solution for all real values of p except 2 .
2. Find the value of ' k ' for which the pair of equations $2 x-k y+3=0,4 x+6 y-5=0$ represents parallel lines

Sol: $2 x-k y+3=0 ; \quad a_{1}=2, \quad b_{1}=-k, c_{1}=3$
$4 x+6 y-5=0 ; \quad a_{2}=4, \quad b_{2}=6, \quad c_{2}=-5$
If given pair of equations represent parallel lines then
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \Rightarrow \frac{2}{4}=\frac{-k}{6}$
$\Rightarrow-k \times 4=2 \times 6$
$\Rightarrow-k=\frac{12}{4}=3$
$\Rightarrow k=-3$
3. For what value of ' k ', the pair of equation $3 x+4 y+2=0$ and $9 x+12 y+k=0$ represents coincident lines.
Sol: $3 x+4 y+2=0 ; \quad a_{1}=3, \quad b_{1}=4, c_{1}=2$
$9 x+12 y+k=0 ; \quad a_{2}=9, \quad b_{2}=12, \quad c_{2}=k$
If given pair of equations represents coincident lines then

$$
\begin{aligned}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} & \Rightarrow \frac{3}{9}=\frac{4}{12}=\frac{2}{k} \\
& \Rightarrow k \times 3=2 \times 9 \\
& \Rightarrow k=\frac{18}{3}=6
\end{aligned}
$$

4. For what positive values of ' p ' the following pair of liner equations have infinitely many solutions? $p x+3 y-(p-3)=0 ; \quad 12 x+p y-p=0$
Sol: $p x+3 y-(p-3)=0 ; \quad a_{1}=p, \quad b_{1}=3, c_{1}=-(p-3)$
$12 x+p y-p=0 \quad ; \quad a_{2}=12, \quad b_{2}=p, c_{2}=-p$
If given pair of liner equations have infinitely many solutions then

$$
\begin{aligned}
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} & \Rightarrow \frac{p}{12}=\frac{3}{p}=\frac{-(p-3)}{-p} \\
& \Rightarrow \frac{p}{12}=\frac{3}{p} \\
& \Rightarrow p^{2}=36 \\
& \Rightarrow p=6
\end{aligned}
$$

Example-4. In a garden there are some bees and flowers. If one bee sits on each flower then one bee will be left. If two bees sit on each flower, one flower will be left. Find the number of bees and number of flowers.

Solu: Let the number of bees $=\mathrm{x}$ and the number of flowers $=\mathrm{y}$

If one bee sits on each flower then one bee will be left.
So, $x=y+1$
$x-y-1=0 \rightarrow(1)$
If two bees sit on each flower, one flower will be left.
So, $x=2(y-1)$
$x-2 y+2=0 \rightarrow(2)$

$x-y-1=0 \Rightarrow y=x-1$		
x	$y=x-1$	(x, y)
0	$y=0-1=-1$	$(0,-1)$
2	$y=2-1=1$	$(2,1)$
4	$y=4-1=3$	$(4,3)$
6	$y=6-1=5$	$(6,5)$

$x-2 y+2=0 \Rightarrow 2 y=x+2 \Rightarrow y=\frac{x+2}{2}$		
x	$y=\frac{x+2}{2}$	(x, y)
0	$y=\frac{0+2}{2}=\frac{2}{2}=1$	$(0,1)$
2	$y=\frac{2+2}{2}=\frac{4}{2}=2$	$(2,2)$
4	$y=\frac{4+2}{2}=\frac{6}{2}=3$	$(4,3)$
6	$y=\frac{6+2}{2}=\frac{8}{2}=4$	$(6,4)$

Solution $(4,3)$
Therefore, there are 4 bees and 3 flowers.
Example-5. The perimeter of a rectangular plot is 32 m . If the length is increased by 2 m and the breadth is decreased by 1 m , the area of the plot remains the same. Find the length and breadth of

the plot.

Sol: Let length $=l$ and breadth $=b$
Perimeter $=2(\mathrm{l}+\mathrm{b})=32 \mathrm{~m}$
$l+b=16 \rightarrow(1)$
If the length is increased by 2 m and the breadth is decreased by 1 m
New length $=L=(l+2) m$ and breadth $=B=(b-1) m$
The area of the plot remains the same
$L \times B=l \times b$
$(l+2)(b-1)=l b$
$l b-l+2 b-2=l b$
$l-2 b+2=0 \rightarrow(2)$

$l+b=16 \Rightarrow l=16-b$		
x	$b=16-l$	(l, b)
6	$b=16-6=10$	$(6,10)$
8	$b=16-8=8$	$(8,8)$
10	$b=16-10=6$	$(10,6)$
14	$b=16-14=2$	$(14,2)$

$l-2 b+2=0 \Rightarrow 2 b=l+2 \Rightarrow b=\frac{l+2}{2}$		
l	$b=\frac{l+2}{2}$	(l, b)
6	$y=\frac{6+2}{2}=\frac{8}{2}=4$	$(6,4)$
8	$y=\frac{8+2}{2}=\frac{10}{2}=5$	$(8,5)$
10	$y=\frac{10+2}{2}=\frac{12}{2}=6$	$(10,6)$
14	$y=\frac{14+2}{2}=\frac{16}{2}=8$	$(14,8)$

So, original length of the plot is 10 m and its breadth is 6 m

Exercise - 4.1

1. By comparing the ratios $\frac{a_{1}}{a_{2}}, \frac{b_{1}}{b_{2}}, \frac{c_{1}}{c_{2}}$ find out whether the lines represented by the following pairs of linear equations intersect at a point, are parallel or are coincident.
a) $5 x-4 y+8=0 ; 7 x+6 y-9=0$

Sol: $5 x-4 y+8=0 \quad ; \quad\left(a_{1}=5, b_{1}=-4, c_{1}=8\right)$
$7 x+6 y-9=0 \quad ; \quad\left(a_{2}=7, b_{2}=6, c_{2}=-9\right)$
$\frac{a_{1}}{a_{2}}=\frac{5}{7} ; \quad \frac{b_{1}}{b_{2}}=\frac{-4}{6}=\frac{-2}{3} ; \quad \frac{c_{1}}{c_{2}}=\frac{8}{-9}=\frac{-8}{9}$
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow$ Given pairs of linear equations intersect at a point.
b) $9 x+3 y+12=0 ; 18 x+6 y+24=0$

Sol: $9 x+3 y+12=0 ; \quad a_{1}=9, b_{1}=3, c_{1}=12$
$18 x+6 y+24=0 ; \quad a_{2}=18, b_{2}=6, \quad c_{2}=24$
$\frac{a_{1}}{a_{2}}=\frac{9}{18}=\frac{1}{2} ; \quad \frac{b_{1}}{b_{2}}=\frac{3}{6}=\frac{1}{2} ; \quad \frac{c_{1}}{c_{2}}=\frac{12}{24}=\frac{1}{2}$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \Rightarrow$ Given pairs of linear equations are coincident
c) $\mathbf{6 x}-\mathbf{3 y}+\mathbf{1 0}=0 ; 2 \boldsymbol{x}-\boldsymbol{y}+\mathbf{9}=\mathbf{0}$

Sol: $6 x-3 y+10=0 ; \quad a_{1}=6, b_{1}=-3, c_{1}=10$
$2 x-y+9=0 \quad ; \quad a_{2}=2, b_{2}=-1, c_{2}=9$
$\frac{a_{1}}{a_{2}}=\frac{6}{2}=3 ; \quad \frac{b_{1}}{b_{2}}=\frac{-3}{-1}=3 ; \quad \frac{c_{1}}{c_{2}}=\frac{10}{9}$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \Rightarrow$ Given pairs of linear equations are parallel
ALGEBRAIC METHODS OF FINDING THE SOLUTIONS FOR A PAIR OF LINEAR EQUATIONS

SUBSTITUTION METHOD

Do This

Solve each pair of equation by using the substitution method.

1. $3 x-5 y=-1 ; x-y=-1$

Sol: $\quad 3 x-5 y=-1 \rightarrow(1)$
$x-y=-1 \rightarrow(2)$
From (2) : $x=-1+y$
Substituting in equation (1) we get
$3(-1+y)-5 y=-1$
$-3+3 y-5 y=-1$
$-2 y=-1+3$
$-2 y=2$
$y=\frac{2}{-2}=-1$
Substitute $y=-1$ in equation (2)
$x=-1-1=-2$
Therefore, required solution is $x=-2$ and $y=-1$.
2. $\boldsymbol{x}+\mathbf{2 y}=-1 ; 2 x-3 y=12$

Sol: $x+2 y=-1 \rightarrow$ (1)
$2 x-3 y=12 \rightarrow(2)$
From (1): $x=-1-2 y$
Substituting in equation (2) we get
$2(-1-2 y)-3 y=12$
$-2-4 y-3 y=12$
$-7 y=12+2=14$
$y=\frac{14}{-7}=-2$

Substitute $y=-2$ in equation (1)
$x=-1-2 y=-1-2 \times(-2)=-1+4=3$
Therefore, required solution is $x=3$ and $y=-2$
3. $\mathbf{2 x}+\mathbf{3 y}=9 ; 3 \boldsymbol{x}+\mathbf{4 y}=\mathbf{5}$

Sol: $2 x+3 y=9 \rightarrow(1)$
$3 x+4 y=5 \rightarrow(2)$
From (1): $3 y=9-2 x$
$y=\frac{9-2 x}{3}$
Substituting in equation (2) we get
$3 x+4\left(\frac{9-2 x}{3}\right)=5$
$\frac{9 x+36-8 x}{3}=5$
$x+36=15$
$x=15-36$
$x=-21$
Substitute $x=-21$ in equation (1)
$y=\frac{9-2 x}{3}=\frac{9-2(-21)}{3}=\frac{9+42}{3}=\frac{51}{3}=17$
Therefore, required solution is $x=-21$ and $y=17$
4. $x+\frac{6}{y}=6 ; 3 x-\frac{8}{y}=5$

Sol: $x+\frac{6}{y}=6 \rightarrow(1)$
$3 x-\frac{8}{y}=5 \rightarrow$ (2)
Let $\frac{1}{y}=a$
(1) $\Rightarrow x+6 a=6 \rightarrow$ (3)
(2) $\Rightarrow 3 x-8 a=5 \rightarrow$ (4)

From(3): $x=6-6 a$
Substituting in equation (4) we get
$3(6-6 a)-8 a=5$
$18-18 a-8 a=5$
$-26 a=5-18=-13$
$a=\frac{-13}{-26}=\frac{1}{2}$
$\therefore \frac{1}{y}=\frac{1}{2} \Rightarrow y=2$

Substitute $y=2$ in equation (1)
$x+\frac{6}{2}=6 \Rightarrow x+3=6$
$\Rightarrow x=6-3=3$
Therefore, required solution is $x=3$ and $y=2$
5. $0.2 x+0.3 y=1.3 ; 0.4 x+0.5 y=2.3$

Sol: $0.2 x+0.3 y=1.3$
Multiply with 10
$2 x+3 y=13 \rightarrow(1)$
$0.4 x+0.5 y=2.3$
Multiply with 10
$4 x+5 y=23 \rightarrow(2)$
From(1): $2 x=13-3 y$
$\Rightarrow x=\frac{13-3 y}{2}$
Substituting in equation (2) we get
$4\left(\frac{13-3 y}{2}\right)+5 y=23$
$26-6 y+5 y=23$
$-y=23-26=-3$
$y=3$
Substitute $y=3$ in (1)
$x=\frac{13-3 y}{2}=\frac{13-3 \times 3}{2}=\frac{13-9}{2}=\frac{4}{2}=2$
Therefore, required solution is $x=2$ and $y=3$
6. $\sqrt{2} x+\sqrt{3} y=0 ; \sqrt{3} x-\sqrt{8} y=0$

Sol: $\quad \sqrt{2} x+\sqrt{3} y=0 \rightarrow(1)$
$\sqrt{3} x-\sqrt{8} y=0 \rightarrow(2)$
From(1): $\sqrt{3} y=-\sqrt{2} x$
$y=\frac{-\sqrt{2} x}{\sqrt{3}}$
Substituting in equation (2) we get

$$
\begin{aligned}
& \sqrt{3} x-\sqrt{8}\left(\frac{-\sqrt{2} x}{\sqrt{3}}\right)=0 \\
& \Rightarrow \sqrt{3} x+\frac{4 x}{\sqrt{3}}=0 \Rightarrow \frac{3 x+4 x}{\sqrt{3}}=0 \\
& \quad 3 x+4 x=0
\end{aligned}
$$

$$
\begin{aligned}
& 7 x=0 \\
& x=0 \\
& y=\frac{-\sqrt{2} x}{\sqrt{3}}=0
\end{aligned}
$$

Therefore, required solution is $x=0$ and $y=0$.

ELIMINATION METHOD

Do THIS

Solve each of the following pairs of equations by the elimination method.

1. $\mathbf{8 x}+\mathbf{5 y}=9 ; \mathbf{3 x}+\mathbf{2 y}=\mathbf{4}$

Sol: $8 x+5 y=9 \rightarrow(1)$
$3 x+2 y=4 \rightarrow(2)$
$2 \times(1) \Rightarrow 16 x+10 y=18$
$5 \times(2) \Rightarrow 15 x+10 y=20$

$$
\begin{array}{cc}
(-) \quad(-) \quad(-) \\
x & =-2
\end{array}
$$

Substitute $x=-2$ in equation (1)
$8(-2)+5 y=9$
$-16+5 y=9$
$5 y=9+16$
$5 y=25$
$y=\frac{25}{5}=5$
Therefore, the required solution is $x=-2, y=5$.
2. $2 \boldsymbol{x}+3 \boldsymbol{y}=8 ; 4 \boldsymbol{x}+6 \boldsymbol{y}=\mathbf{7}$

Sol: $2 x+3 y=8 \rightarrow(1)$
$4 x+6 y=7 \rightarrow(2)$
$2 \times(1) \Rightarrow 4 x+6 y=16$
$1 \times(2) \Rightarrow 4 x+6 y=7$
$\overline{0=9}$ it is not possible.
So, the given pair of equations has no solutions.
3. $3 x+4 y=25 ; 5 x-6 y=-9$

Sol: $3 x+4 y=25 \rightarrow(1)$
$5 x-6 y=-9 \rightarrow(2)$
$3 \times(1) \Rightarrow 9 x+12 y=75$
$2 \times(2) \Rightarrow 10 x-12 y=-18$
$19 x=57$

$$
x=\frac{57}{19}=3
$$

Substitute $x=3$ in equation (1)
3(3) $+4 y=25$
$9+4 y=25$
$4 y=25-9=16$
$y=\frac{16}{4}=4$
Therefore, the required solution is $x=3, y=4$.

Try This

Solve the given pair of linear equations
$(a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \rightarrow(1)$
$(a+b)(x+y)=a^{2}+b^{2} \rightarrow(2)$
(1) $\Rightarrow(a-b) x+(a+b) y=a^{2}-2 a b-b^{2}$
(2) $\Rightarrow(a+b) x+(a+b) y=a^{2}+b^{2}$

$$
\begin{aligned}
& (a-b) x-(a+b) x=a^{2}-2 a b-b^{2}-a^{2}-b^{2} \\
& a x-b x-a x-b x=-2 a b-2 b^{2} \\
& -2 b x=-2 b(a+b) \\
& x=\frac{-2 b(a+b)}{-2 b}=(a+b)
\end{aligned}
$$

Substitute $x=(a+b)$ in equation (1)

$$
\begin{aligned}
& (a-b)(a+b)+(a+b) y=a^{2}-2 a b-b^{2} \\
& a^{2}-b^{2}+(a+b) y=a^{2}-2 a b-b^{2} \\
& (a+b) y=a^{2}-2 a b-b^{2}-a^{2}+b^{2} \\
& (a+b) y=-2 a b \\
& y=\frac{-2 a b}{a+b}
\end{aligned}
$$

Therefore, the required solution is $x=a+b, y=\frac{-2 a b}{a+b}$
Example-8. Rubina went to a bank to withdraw ₹2000. She asked the cashier to give the cash in ₹50 and ₹100 notes only. Rubina got 25 notes in all. Can you tell how many notes each of D50 and ₹100 she received?

Sol: Let the number of $₹ 50$ notes $=x$
The number of $₹ 100$ notes $=y$
Total notes $=25$
$x+y=25 \rightarrow(1)$
Value of notes=₹ 2000
$50 x+100 y=2000$
$x+2 y=40 \rightarrow(2)$
(2) $\Rightarrow x+2 y=40$
(1) $\Rightarrow x+y=25$

$$
\frac{(-)(-)(-)}{y=15}
$$

Substitute $y=15$ in equ (1)
$x+15=25$
$x=25-15=10$
\therefore Rubina received ten ₹50 notes and fifteen ₹100 rupee notes.
Example-9. In a competitive exam, 3 marks are to be awarded for every correct answer and for every wrong answer, 1 mark will be deducted. Madhu scored 40 marks in this exam. Had 4 marks been awarded for each correct answer and 2 marks deducted for each incorrect answer, Madhu would have scored 50 marks. How many questions were there in the test? (Madhu attempted all the questions)
Sol: Let the number of correct answers $=x$ and wrong answers $=y$
When 3 marks are given for each correct answer and 1 mark deducted for each wrong answer, his score $=40$ marks.
$3 x-y=40 \rightarrow$ (1)
If 4 marks were given for each correct answer and 2 marks deducted for each wrong answer his score $=50$ marks
$4 x-2 y=50 \rightarrow(2)$
$2 \times e q u(1) \Rightarrow 6 x-2 y=80$
equ $(2) \Rightarrow 4 x-2 y=50$

$$
2 x=30
$$

$$
x=15
$$

Substitute $x=15$ in equ (1)
$3(15)-y=40$
$45-y=40$
$y=45-40=5$
\therefore Total number of questions $=15+5=20$.
Example-10. Mary told her daughter, "Seven years ago, I was seven times as old as you were then.
Also, three years from now, I shall be three times as old as you will be." Find the present age of Mary and her daughter.
Sol:
\square

Present	x	y
Seven years ago	$x-7$	$y-7$
Three years from now	$x+3$	$y+3$

Seven years ago:
Mary's age $=7 \times$ daughter's age
$x-7=7(y-7)$
$x-7=7 y-49$
$x-7 y=-42 \rightarrow(1)$
equ(1) $\Rightarrow x-7 y=-42$
$\operatorname{equ}(2) \Rightarrow x-3 y=6$

$$
\begin{gathered}
\frac{(-)(-)(-)}{-4 y=-48} \\
y=\frac{-48}{-12}=4
\end{gathered}
$$

Substitute the value of y in equation (2)
$x-3(12)=6$
$x=6+36=42$
\therefore Mary's present age is 42 years and her daughter's age is 12 years.
Example-11. A publisher is planning to produce a new textbook. The fixed costs (reviewing, editing, typesetting and so on) are D 31.25 per book. Besides that, he also spends another D 320000 in producing the book. The wholesale price (the amount received by the publisher) is D 43.75 per book. How many books must the publisher sell to break even, i.e., so that the costs will equal revenues?

Sol: Let the number of books printed $=x$
Break even point $=y$
Cost equation is given by : $y=320000+31.25 x \rightarrow$ (1)
Revenue equation is given by : $y=43.75 x \rightarrow(2)$
From (1) and (2)
$43.75 x=320000+31.25 x$
$43.75 x-31.25 x=320000$
$12.5 x=320000$
$x=\frac{320000}{12.5}=25,600$
Thus, the publisher will break even when 25,600 books are printed and sold

Exercise - 4.2

Form a pair of linear equations for each of the following problems and find their solution

1. The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditures is $4: 3$. If each of them manages to save ₹ 2000 per month, find their monthly income.

Sol: The ratio of incomes of two persons $=9: 7$
Let their incomes be $9 x$ and $7 x$
The ratio of their expenditures $=4: 3$
Let their expenditures be $4 y$ and $3 y$
Given each of them manages to save ₹ 2000 per month
$9 x-4 y=2000 \rightarrow(1)$
$7 x-3 y=2000 \rightarrow(2)$
$3 \times(1) \Rightarrow 27 x-12 y=6000$
$4 \times(2) \Rightarrow 28 x-12 y=8000$
$-x=-2000$
$x=2000$

Substitute $x=2000$ in (1)
$9(2000)-4 y=2000$
$18000-4 y=2000$
$-4 y=2000-18000$
$-4 y=-16000$
$4 y=16000$
$y=\frac{16000}{4}=4000$
Their incomes are 9×2000 and 7×2000
$\Rightarrow ₹ 18000$ and $₹ 14000$
2. The sum of a two digit number and the number obtained by reversing the digits is 66 . If the digits of the number differ by 2 , find the number. How many such numbers are there?

Sol: Let the unit place digit be x and tens place digit be y
The number $=10 y+x$
The number obtained by reversing the digits $=10 x+y$
From the problem
$(10 y+x)+(10 x+y)=66$
$11 x+11 y=66$
$x+y=6 \rightarrow$ (1)
Given the digits of the number differ by 2
$x-y=2 \rightarrow(2)$
(1) $\Rightarrow x+y=6$
(2) $\Rightarrow x-y=2$

$$
\begin{aligned}
& 2 x=8 \\
& x=\frac{8}{2}=4
\end{aligned}
$$

Substitute $x=4$ in (1)
$4+y=6$
$y=6-4=2$
The number is $10 y+x$ and $10 x+y$
$\Rightarrow 10 \times 2+4$ and $10 \times 4+2$
$\Rightarrow 24$ and 42
3. The larger of two supplementary angles exceeds the smaller by 18°. Find the angles

Sol: Let the two supplementary angles be x and $y(x>y)$
$x+y=180^{\circ} \rightarrow(1)$
From problem
$x=y+18^{0}$
$x-y=18^{0} \rightarrow(2)$
(1) $+(2) \Rightarrow x+y=180^{\circ}$

$$
\begin{aligned}
& \frac{x-y=18^{0}}{2 x=198^{0}} \\
& x=\frac{198}{2}=99^{\circ}
\end{aligned}
$$

Substitute x value in (1)
$99^{0}+y=180^{0}$
$y=180^{\circ}-99^{\circ}=81^{0}$
The angles are 99° and 81°
4. The taxi charges in Hyderabad are fixed, along with the charge for the distance covered. For a distance of 10 km ., the charge paid is D220. For a journey of 15 km . the charge paid is ₹310. i.
What are the fixed charges and charge per km?
ii. How much does a person have to pay for travelling a distance of 25 km ?

Sol: Let the fixed charge $=x$
Let the charge for $1 \mathrm{~km}=y$
The charge paid for $10 \mathrm{~km}=220$
$x+10 y=220 \rightarrow(1)$
The charge paid for $15 \mathrm{~km}=220$
$x+15 y=310 \rightarrow(2)$
(2) $-(1) \Rightarrow x+15 y=310$
$x+10 y=220$
$(-)(-) \quad(-)$
$5 y=90$

$$
y=\frac{90}{5}=18
$$

Substitute $y=18$ in (1)
$x+10(18)=220$
$x+180=220$
$x=220-180=40$
\therefore Fixed charge $=x=₹ 40$
Charge for $1 \mathrm{~km}=y=₹ 18$
ii. Charge for travelling a distance of $25 \mathrm{~km}=x+25 y=40+25 \times 18=40+450=₹ 490$
5. A fraction becomes $\frac{4}{5}$ if 1 is added to both numerator and denominator. If, however, 5 is subtracted from both numerator and denominator, the fraction becomes $\frac{1}{2}$. What is the fraction?

Sol: Let the fraction $=\frac{x}{y}$
From the problem
$\frac{x+1}{y+1}=\frac{4}{5}$
and $\quad \frac{x-5}{y-5}=\frac{1}{2}$
$\Rightarrow 5(x+1)=4(y+1)$
and $2(x-5)=1(y-5)$
$\Rightarrow 5 x+5=4 y+4 \quad$ and $\quad 2 x-10=y-5$
$\Rightarrow 5 x-4 y=4-5$ and $2 x-y=-5+10$
$\Rightarrow 5 x-4 y=-1 \rightarrow$ (1) and $2 x-y=5 \rightarrow$ (2)
(1) $\Rightarrow 5 x-4 y=-1$
$4 \times(2) \Rightarrow 8 x-4 y=20$

$$
\begin{aligned}
& \frac{(-)(+)(-)}{-3 x=-21} \\
& 3 x=21 \\
& x=\frac{21}{3}=7
\end{aligned}
$$

Substitute $x=7$ in (2)
2(7) $-y=5$
$14-y=5$
$y=14-5=9$
\therefore The fraction $=\frac{7}{9}$
6. Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time at different speeds. If the cars travel in the same direction, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?

Sol: Let the speed of car starts form $\mathrm{A}=x \mathrm{~km} / \mathrm{h}$
Let the speed of car starts form $B=y \mathrm{~km} / \mathrm{h}$
Time \times speed $=$ Distance
When the cars travelled in same direction relative speed $=(x-y)$,they meet in 5 hours.
$5(x-y)=100 \Rightarrow x-y=20 \rightarrow$ (1)
When the cars travelled towards each other relative speed $=(x+y)$, they meet in 1hour.
$1(x+y)=100 \Rightarrow x+y=100 \rightarrow(2)$
$(1)+(2) \Rightarrow 2 x=120$

$$
x=\frac{120}{2}=60
$$

Substitute $x=60$ in (2)
$60+y=100$
$y=100-60=40$
\therefore The speed of first car $=60 \mathrm{~km} / \mathrm{h}$ and second car $=40 \mathrm{~km} / \mathrm{h}$.
7. Two angles are complementary. The larger angle is 3° less than twice the measure of the smaller angle. Find the measure of each angle.

Sol: Let the larger angle $=x$ and smaller angle $=y$
Sum of complementary angles $=90^{\circ}$
$x+y=90^{0} \rightarrow(1)$
From the problem
$x=2 y-3^{0}$
$x-2 y=-3^{0} \rightarrow(2)$
(1) $-(2) \Rightarrow x+y=90^{\circ}$
$x-2 y=-3^{0}$
$3 y=93^{0}$
$y=\frac{93^{0}}{3}=31^{0}$
Substitute $y=31^{0}$ in (1)
$x+31^{0}=90^{\circ}$
$x=90^{\circ}-31^{0}=59^{0}$
\therefore The angles are 59° and 31^{0}
8. An algebra textbook has a total of 1382 pages. It is broken up into two parts. The second part of the book has 64 pages more than the first part. How many pages are in each part of the book?

Sol: Let the pages in first part $=x$
Let the pages in second part $=y$

Total pages $=1382$
$x+y=1382 \rightarrow(1)$
$y=x+64$
$x-y=-64 \rightarrow(2)$
(1) $+(2) \Rightarrow x+y+x-y=1382-64$

$$
2 x=1318
$$

$$
x=\frac{1318}{2}=659
$$

Substitute $x=659$ in (1)
$659+y=1382$
$y=1382-659=723$
\therefore The number of pages in the first part $=659$.
The number of pages in the second part=723.
9. A chemist has two solutions of hydrochloric acid in stock. One is 50% solution and the other is 80% solution. How much of each should be used to obtain 100 ml of a 68% solution

Sol: Let the first solution $=x \mathrm{ml}$ and second solution $=y \mathrm{ml}$
$x+y=100 \rightarrow(1)$
From problem
50% of $x+80 \%$ of $y=68 \%$ of 100
$\frac{50 x}{100}+\frac{80 y}{100}=\frac{68}{100} \times 100$
$50 x+80 y=6800$
$5 x+8 y=680 \rightarrow(2)$
$8 \times(1) \Rightarrow 8 x+8 y=800$
(2) $\Rightarrow 5 x+8 y=680$

$$
\begin{array}{cc}
(-)(+) & (-) \\
\hline 3 x \quad=120
\end{array}
$$

$$
x=\frac{120}{3}=40
$$

Substitute $\mathrm{x}=40$ in (1)
$40+y=100$
$y=100-40=60$
\therefore The first solution $=40 \mathrm{ml}$
The second solution $=60 \mathrm{ml}$
10. Suppose you have ₹ 12000 to invest. You have to invest some amount at 10% and the rest at 15%. How much should be invested at each rate to yield 12% on the total amount invested?

Sol: Let the amount to be saved at $10 \%=x$

Let the amount to be saved at $15 \%=y$
From problem
$x+y=12000 \rightarrow(1)$
10% of $x+15 \%$ of $y=12 \%$ of 12000
$\frac{10 x}{100}+\frac{15 y}{100}=\frac{12}{100} \times 12000$
$10 x+15 y=144000 \rightarrow(2)$
(2) $\Rightarrow 10 x+15 y=144000$
$10 \times(1) \Rightarrow 10 x+10 y=120000$

$(-) \quad(-)$	$(-)$
	$5 y$

$$
y=\frac{24000}{5}=4800
$$

Substitute $\mathrm{y}=4800$ in (1)
$x+4800=12000$
$x=12000-4800=7200$
The amount saved at $10 \%=₹ 7200$
The amount saved in $15 \%=₹ 4800$
Example-12. Solve the following pair of equations.

$$
\frac{2}{x}+\frac{3}{y}=13 \text { and } \frac{5}{x}-\frac{4}{y}=-2
$$

Sol: $\quad \frac{2}{x}+\frac{3}{y}=13 ; \quad \frac{5}{x}-\frac{4}{y}=-2$
$2\left(\frac{1}{x}\right)+3\left(\frac{1}{y}\right)=13 ; \quad 5\left(\frac{1}{x}\right)-4\left(\frac{1}{y}\right)=-2$
Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
$2 a+3 b=13 \rightarrow(1)$
$5 a-4 b=-2 \rightarrow(2)$
$4 \times(1) \Rightarrow 8 a+12 b=52$
$3 \times(2) \Rightarrow 15 a-12 b=-6$
$23 a=46$
$a=\frac{46}{23}=2$
Substitute $a=2$ in (1)
$2 \times 2+3 b=13$
$4+3 b=13$
$3 b=13-4$
$3 b=9$
$b=3$
But $\frac{1}{x}=a \Rightarrow \frac{1}{x}=2 \Rightarrow x=\frac{1}{2}$

$$
\frac{1}{y}=b \Rightarrow \frac{1}{y}=3 \Rightarrow y=\frac{1}{3}
$$

Solution $x=\frac{1}{2}$ and $y=\frac{1}{3}$
Example-13. Kavitha thought of constructing 2 more rooms in her house. She enquired about the labour. She came to know that 6 men and 8 women could finish this work in 14 days. But she wish to complete the work in 10 days. When she enquired, she was told that 8 men and 12 women could finish the work in 10 days. Find out that how much time would be taken to finish the work if one man or one woman worked alone?

Solu : Let the time taken by one man to finish the work $=\mathrm{x}$ days.
Work done by one man in one day $=\frac{1}{x}$
Let the time taken by one woman to finish the work $=\mathrm{y}$ days.
Work done by one woman in one day $=\frac{1}{y}$
Now, 8 men and 12 women can finish the work in 10 days.
So work done by 8 men and 12 women in one day $=\frac{1}{10}$
$8 \times \frac{1}{x}+12 \times \frac{1}{y}=\frac{1}{10}$
$\frac{8}{x}+\frac{12}{y}=\frac{1}{10} \Rightarrow 10\left(\frac{8}{x}+\frac{12}{y}\right)=1 \Rightarrow \frac{80}{x}+\frac{120}{y}=1 \rightarrow(1)$
Also, 6 men and 8 women can finish the work in 14 days.
$\frac{6}{x}+\frac{8}{y}=\frac{1}{14} \Rightarrow 14\left(\frac{6}{x}+\frac{8}{y}\right)=1 \Rightarrow \frac{84}{x}+\frac{112}{y}=1 \rightarrow(2)$
Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
Equ (1) $\Rightarrow 80 a+120 b=1 \rightarrow$ (3)
Equ (2) $\Rightarrow 84 a+112 b=1 \rightarrow$ (4)
LCM of $120,112=1680$
Equ $(4) \times 15 \Rightarrow 1260 a+1680 b=15$
Equ $(3) \times 14 \Rightarrow 1120 a+1680 b=14$

$a=\frac{1}{140}$

$$
\begin{aligned}
& \text { Substitute } a=\frac{1}{140} \text { in equ(3) } \\
& 80 \times \frac{1}{140}+120 b=1 \\
& \frac{4}{7}+120 b=1 \\
& 120 b=1-\frac{4}{7}=\frac{7-4}{7}=\frac{3}{7} \\
& b=\frac{3}{7 \times 120}=\frac{1}{7 \times 40}=\frac{1}{280} \\
& \frac{1}{x}=\frac{1}{140} \text { and } \frac{1}{y}=\frac{1}{280} \\
& x=140 \text { and } y=280
\end{aligned}
$$

So one man alone can finish the work in 140 days and one woman alone can finish the work in 280 days.

Example-14. A man travels 370 km partly by train and partly by car. If he covers 250 km by train and the rest by car, it takes him 4 hours. But if he travels 130 km by train and the rest by car, it takes 18 minutes more. Find the speed of the train and that of the car.

Sol: Let the speed of the train $=x \mathrm{~km} / \mathrm{hr}$.
Let the speed of the car $=y \mathrm{~km} / \mathrm{hr}$
Distance covered by train $=250 \mathrm{~km}$
Time spent travelling by train $=\frac{250}{x} h r s$

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}
$$

Distance covered by car $=370-250=120 \mathrm{~km}$
Time spent travelling by car $=\frac{120}{y} \mathrm{hrs}$
Total time taken $=4$ hours
$\frac{250}{x}+\frac{120}{y}=4 \rightarrow$ (1)
Similarly
$\frac{130}{x}+\frac{240}{y}=4 \frac{3}{10} \rightarrow(2)$

$$
18 \text { minutes }=\frac{18}{60} h r s=\frac{3}{10} h r s
$$

Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
$E q u(1) \Rightarrow 250 a+120 b=4 \rightarrow(3)$
Equ (2) $\Rightarrow 130 a+240 b=\frac{43}{10} \rightarrow$ (4)
Equ $(3) \times 2 \Rightarrow 500 a+240 b=8$
$E q u(4) \times 1 \Rightarrow 130 a+240 b=\frac{43}{10}$

$$
370 a=8-\frac{43}{10}
$$

$370 a=\frac{37}{10}$
$a=\frac{37}{10 \times 370}=\frac{1}{100}$
Substitute $a=\frac{1}{100}$ in equ(3)
$250 \times \frac{1}{100}+120 b=4$
$\frac{5}{2}+120 b=4$
$120 b=4-\frac{5}{2}=\frac{8-5}{2}=\frac{3}{2}$
$b=\frac{3}{2 \times 120}=\frac{1}{80}$
$\frac{1}{x}=\frac{1}{100}$ and $\frac{1}{y}=\frac{1}{80}$
$x=100$ and $y=80$
So, speed of train was $100 \mathrm{~km} / \mathrm{hr}$ and speed of car was $80 \mathrm{~km} / \mathrm{hr}$.

Exercise - 4.3

Solve each of the following pairs of equations by reducing them to a pair of linear equations.

1. $\frac{5}{x-1}+\frac{1}{y-2}=2 ; \frac{6}{x-1}-\frac{3}{y-2}=1$

Sol:

$$
\begin{aligned}
& \begin{array}{l}
5\left(\frac{1}{x-1}\right)+1\left(\frac{1}{y-2}\right)=2 \rightarrow(1) \\
\text { Let } \frac{1}{x-1}=a \text { and } \frac{1}{y-2}=b \\
5 a+b=2 \rightarrow(3) \\
3 \times(3) \Rightarrow 15 a+3 b=6
\end{array} \\
& \begin{array}{l}
\left.(4) \Rightarrow \frac{1}{x-1}\right)-3 a-3 b=1 \\
\left.\frac{21 a-2}{y-2}\right)=1 \rightarrow(2) \\
\quad a=\frac{7}{21}=\frac{1}{3}
\end{array} \\
& \text { Substitute } a=\frac{1}{3} \text { in equation (4) } \\
& 6\left(\frac{1}{3}\right)-3 b=1
\end{aligned}
$$

$2-3 b=1$
$-3 b=1-2$
$-3 b=-1$
$b=\frac{-1}{-3}=\frac{1}{3}$
Now $a=\frac{1}{3} \Rightarrow \frac{1}{x-1}=\frac{1}{3}$

$$
\Rightarrow x-1=3
$$

$$
\Rightarrow x=3+1=4
$$

$b=\frac{1}{3} \Rightarrow \frac{1}{y-2}=\frac{1}{3}$

$$
\begin{aligned}
& \Rightarrow y-2=3 \\
& \Rightarrow y=3+2=5
\end{aligned}
$$

Solution $x=4$ and $y=5$
ii) $\frac{x+y}{x y}=2, \frac{x-y}{x y}=6$

Sol: $\frac{x+y}{x y}=2 \Rightarrow \frac{x}{x y}+\frac{y}{x y}=2 \Rightarrow \frac{1}{y}+\frac{1}{x}=2 \rightarrow$ (1)
$\frac{x-y}{x y}=6 \Rightarrow \frac{x}{x y}-\frac{y}{x y}=6 \Rightarrow \frac{1}{y}-\frac{1}{x}=6 \rightarrow$ (2)
Let $\frac{1}{y}=a$ and $\frac{1}{x}=b$
(1) $\Rightarrow a+b=2 \rightarrow$ (3)
(2) $\Rightarrow a-b=6 \rightarrow$ (4)
(3) $+(4) \Rightarrow a+b=2$

$$
\frac{\frac{a-b=6}{2 a=8}}{\Rightarrow a=\frac{8}{2}=4}
$$

Substitute $a=4$ in equation (3)
$4+b=2$
$b=2-4=-2$
But $\frac{1}{x}=b \Rightarrow \frac{1}{x}=-2 \Rightarrow x=\frac{-1}{2}$
$\frac{1}{y}=a \Rightarrow \frac{1}{y}=4 \Rightarrow y=\frac{1}{4}$
Solution $x=\frac{-1}{2}$ and $y=\frac{1}{4}$
iii) $\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 ; \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1$

$$
\begin{aligned}
& \text { Sol: } \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \Rightarrow 2\left(\frac{1}{\sqrt{x}}\right)+3\left(\frac{1}{\sqrt{y}}\right)=2 \rightarrow(1) \\
& \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \Rightarrow 4\left(\frac{1}{\sqrt{x}}\right)-9\left(\frac{1}{\sqrt{y}}\right)=-1 \rightarrow(2) \\
& \text { Let } \frac{1}{\sqrt{x}}=a \text { and } \frac{1}{\sqrt{y}}=b \\
& \text { (1) } \Rightarrow 2 a+3 b=2 \rightarrow(3) \\
& \text { (2) } \Rightarrow 4 a-9 b=-1 \rightarrow(4) \\
& 3 \times(3) \Rightarrow 6 a+9 b=6 \\
& \text { (4) } \Rightarrow 4 a-9 b=-1 \\
& \quad \begin{array}{l}
10 a \\
a=\frac{5}{10}=\frac{1}{2}
\end{array} \\
& \text { Substitute } a=\frac{1}{2} \text { in }(3) \\
& 2 \times \frac{1}{2}+3 b=2 \\
& 1+3 b=2 \\
& 3 b=1 \Rightarrow b=\frac{1}{3} \\
& \text { Now } \frac{1}{\sqrt{x}}=a \Rightarrow \frac{1}{\sqrt{x}}=\frac{1}{2} \Rightarrow \sqrt{x}=2 \Rightarrow x=4 \\
& \frac{1}{\sqrt{y}}=b \Rightarrow \frac{1}{\sqrt{y}}=\frac{1}{3} \Rightarrow \sqrt{y}=3 \Rightarrow y=9
\end{aligned}
$$

Solution is $x=4$ and $y=9$
iv) $6 x+3 y=6 x y ; 2 x+4 y=5 x y$ Sol:
$6 x+3 y=6 x y$
$\frac{6 x}{x y}+\frac{3 y}{x y}=\frac{6 x y}{x y}$,
$\frac{6}{y}+\frac{3}{x}=6$
$6\left(\frac{1}{y}\right)+3\left(\frac{1}{x}\right)=6$

$$
\begin{aligned}
& 2 x+4 y=5 x y \\
& \frac{2 x}{x y}+\frac{4 y}{x y}=\frac{5 x y}{x y} \\
& \frac{2}{y}+\frac{4}{x}=5 \\
& 2\left(\frac{1}{y}\right)+4\left(\frac{1}{x}\right)=5
\end{aligned}
$$

Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$ then
$6 b+3 a=6 \rightarrow(1)$
$2 b+4 a=5 \rightarrow(2)$
$3 \times(2) \Rightarrow 6 b+12 a=15$
(1) $\Rightarrow 6 b+3 a=6$

| $\mathrm{v}(-)(-) \quad(-)$ |
| :---: | :---: |
| $9 a=9$ |

$$
a=1
$$

Substitute $a=1$ in (1)
$6 b+3 \times 1=6$
$6 b=6-3=3$
$b=\frac{3}{6}=\frac{1}{2}$
But $\frac{1}{x}=a \Rightarrow \frac{1}{x}=1 \Rightarrow x=1$

$$
\frac{1}{y}=b \Rightarrow \frac{1}{y}=\frac{1}{2} \Rightarrow y=2
$$

Solution $x=1$ and $y=2$
v) $\frac{5}{x+y}-\frac{2}{x-y}=-1 ; \frac{15}{x+y}+\frac{7}{x-y}=10$

Sol: $\frac{5}{x+y}-\frac{2}{x-y}=-1 ; \quad \frac{15}{x+y}+\frac{7}{x-y}=10$
$5\left(\frac{1}{x+y}\right)-2\left(\frac{1}{x-y}\right)=-1 ; \quad 15\left(\frac{1}{x+y}\right)+7\left(\frac{1}{x-y}\right)=10$
Let $\frac{1}{x+y}=a$ and $\frac{1}{x-y}=b$ then
$5 a-2 b=-1 \rightarrow$ (1)
$15 a+7 b=10 \rightarrow(2)$
$7 \times(1) \Rightarrow 35 a-14 b=-7$
$2 \times(2) \Rightarrow 30 a+14 b=20$

$$
65 a \quad=13
$$

$$
a=\frac{13}{65}=\frac{1}{5}
$$

Substitute $a=\frac{1}{5}$ in (2)

$$
15 \times\left(\frac{1}{5}\right)+7 b=10
$$

$3+7 b=10$
$7 b=10-3=7$
$b=1$
But $\frac{1}{x+y}=a \Rightarrow \frac{1}{x+y}=\frac{1}{5} \Rightarrow x+y=5 \rightarrow(4)$

$$
\frac{1}{x-y}=b \Rightarrow \frac{1}{x-y}=1 \Rightarrow x-y=1 \rightarrow(5)
$$

$(4)+(5) \Rightarrow 2 x=6 \Rightarrow x=3$
Substitute $\mathrm{x}=3$ in (4)
$3+y=5 \Rightarrow y=5-3=2$
Solution $x=3$ and $y=2$
vi) $\frac{2}{x}+\frac{3}{y}=13 ; \frac{5}{x}-\frac{4}{y}=-2$

Sol: $\frac{2}{x}+\frac{3}{y}=13 ; \quad \frac{5}{x}-\frac{4}{y}=-2$
$2\left(\frac{1}{x}\right)+3\left(\frac{1}{y}\right)=13 ; \quad 5\left(\frac{1}{x}\right)-4\left(\frac{1}{y}\right)=-2$
Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
$2 a+3 b=13 \rightarrow(1)$
$5 a-4 b=-2 \rightarrow(2)$
$4 \times(1) \Rightarrow 8 a+12 b=52$
$3 \times(2) \Rightarrow 15 a-12 b=-6$
$23 a=46$
$a=\frac{46}{23}=2$
Substitute $a=2$ in (1)
$2 \times 2+3 b=13$
$4+3 b=13$
$3 b=13-4$
$3 b=9$
$b=3$
But $\frac{1}{x}=a \Rightarrow \frac{1}{x}=2 \Rightarrow x=\frac{1}{2}$

$$
\frac{1}{y}=b \Rightarrow \frac{1}{y}=3 \Rightarrow y=\frac{1}{3}
$$

Solution $x=\frac{1}{2}$ and $y=\frac{1}{3}$
vii) $\frac{10}{x+y}+\frac{2}{x-y}=4 ; \frac{15}{x+y}-\frac{5}{x-y}=-2$

Sol: $\frac{10}{x+y}+\frac{2}{x-y}=4 ; \quad \frac{15}{x+y}-\frac{5}{x-y}=10$
$10\left(\frac{1}{x+y}\right)+2\left(\frac{1}{x-y}\right)=4 ; \quad 15\left(\frac{1}{x+y}\right)-5\left(\frac{1}{x-y}\right)=-2$
Let $\frac{1}{x+y}=a$ and $\frac{1}{x-y}=b$ then
$10 a+2 b=4 \rightarrow(1)$
$15 a-5 b=-2 \rightarrow(2)$
$5 \times(1) 50 a+10 b=20$
$2 \times(2) 30 a-10 b=-4$

$80 a=16$

$$
a=\frac{16}{80}=\frac{1}{5}
$$

Substitute $a=\frac{1}{5}$ in (1)
$10 \times \frac{1}{5}+2 b=4$
$2+2 b=4$
$2 b=4-2=2$
$b=1$
But $\frac{1}{x+y}=a$ and $\frac{1}{x-y}=b$
$\frac{1}{x+y}=\frac{1}{5}$ and $\frac{1}{x-y}=1$
$x+y=5 \rightarrow$ (3) and $x-y=1 \rightarrow$ (4)
$(3)+(4) \Rightarrow 2 x=6 \Rightarrow x=3$
Substitute $x=3$ in (3)
$3+y=5$
$y=5-3=2$
Solution $x=3$ and $y=2$
viii) $\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} ; \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8}$

Sol: $\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} ; \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8}$
Let $\frac{1}{3 x+y}=a$ and $\frac{1}{3 x-y}=b$ then
$a+b=\frac{3}{4} \Rightarrow 4 a+4 b=3 \rightarrow$ (1)
$\frac{a}{2}-\frac{b}{2}=\frac{-1}{8} \Rightarrow 4 a-4 b=-1 \rightarrow$
$(1)+(2) \Rightarrow 8 a=2 \Rightarrow a=\frac{2}{8}=\frac{1}{4}$
Substitute $a=\frac{1}{4}$ in (1)
$4 \times \frac{1}{4}+4 b=3$
$1+4 b=3$
$4 b=3-1=2$
$b=\frac{2}{4}=\frac{1}{2}$
But $\frac{1}{3 x+y}=a \quad$ and $\quad \frac{1}{3 x-y}=b$

$$
\frac{1}{3 x+y}=\frac{1}{4} \quad \text { and } \quad \frac{1}{3 x-y}=\frac{1}{2}
$$

$3 x+y=4 \rightarrow(3) \quad 3 x-y=2 \rightarrow(4)$
(3) $+(4) \Rightarrow 6 x=6 \Rightarrow x=1$

Substitute $x=1$ in (3)
$3 \times 1+y=4$
$y=4-3=1$
Solution $x=1$ and $y=1$
2. Formulate the following problems as a pair of equations and then find their solutions.
i. A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water

Sol: Let the speed of boat in still water $=x \mathrm{~km} / \mathrm{h}$
The speed of stream $=y \mathrm{~km} / \mathrm{h}$
Relative speed of boat in upstream $=(x-y) \mathrm{km} / \mathrm{h}$
Relative speed of boat in downstream $=(x+y) \mathrm{km} / \mathrm{h}$
Time $=\frac{\text { distance }}{\text { speed }}$
Given boat goes 30 km upstream and 44 km downstream in 10 hours
$\frac{30}{x-y}+\frac{44}{x+y}=10 \rightarrow$ (1)
Boat goes 40 km upstream and 55 km downstream in 13 hours
$\frac{40}{x-y}+\frac{55}{x+y}=13 \rightarrow(2)$
Let $\frac{1}{x-y}=a$ and $\frac{1}{x+y}=b$ then
$30 a+44 b=10 \rightarrow$ (3)
$40 a+55 b=13 \rightarrow(4)$
$4 \times(4) \Rightarrow 160 a+220 b=52$
$5 \times(5) \Rightarrow 150 a+220 b=50$

$$
\begin{array}{cc}
(-) \quad(-) & (-) \\
\hline 10 a & =2
\end{array}
$$

$a=\frac{2}{10}=\frac{1}{5}$

Substitute $a=\frac{1}{5}$ in
$30 \times \frac{1}{5}+44 b=10$
$6+44 b=10$
$44 b=10-6=4$
$b=\frac{4}{44}=\frac{1}{11}$
But $\frac{1}{x-y}=a \Rightarrow \frac{1}{x-y}=\frac{1}{5} \Rightarrow x-y=5 \rightarrow$ (5)
$\frac{1}{x+y}=b \Rightarrow \frac{1}{x+y}=\frac{1}{11} \Rightarrow x+y=11 \rightarrow(6)$
$(5)+(6) \Rightarrow 2 x=16 \Rightarrow x=\frac{16}{2}=8$
Substitute $x=8$ in (6)
$8+y=11 \Rightarrow y=11-8=3$
Speed of boat in still water $=x=8 \mathrm{~km} / \mathrm{h}$
Speed of stream $=y=3 \mathrm{~km} / \mathrm{h}$
ii. Rahim travels 600 km to his home partly by train and partly by car. He takes 8 hours if he travels 120 km by train and rest by car. He takes 20 minutes more if he travels 200 km by train and rest by car. Find the speed of the train and the car.
Sol: Let speed of the train $=x \mathrm{~km} / \mathrm{h}$
Speed of car $=y \mathrm{~km} / \mathrm{h}$
Total travel distance $=600 \mathrm{~km}$
Time $=\frac{\text { distance }}{\text { speed }}$
Time for travels 120 km by train +480 km by car $=8 \mathrm{~h}$
$\frac{120}{x}+\frac{480}{y}=8 \rightarrow$ (1)
Time for travels 200 km by train +400 km by car $=8 \mathrm{~h}+20$ minutes
$\frac{200}{x}+\frac{400}{y}=8+\frac{20}{60}=8+\frac{1}{3}=\frac{25}{3} \rightarrow(2)$
Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
$120 a+480 b=8 \Rightarrow 15 a+60 b=1 \rightarrow$ (3)(Divided by 8)
$200 a+400 b=\frac{25}{3} \Rightarrow 24 a+48 b=1 \rightarrow(4)$ (Dived by 25 multiply 3)
$4 \times(3) \Rightarrow 60 a+240 b=4$
$5 \times(4) \Rightarrow 120 a+240 b=5$

$$
\begin{array}{lrr}
(-) & (-) \quad(-) \\
\hline-60 a & =-1
\end{array}
$$

$$
a=\frac{1}{60}
$$

Substitute $a=\frac{1}{60}$ in (3)
$15 \times \frac{1}{60}+60 b=1$
$\frac{1}{4}+60 b=1$
$60 b=1-\frac{1}{4}=\frac{3}{4}$
$b=\frac{3}{4 \times 60}=\frac{1}{80}$
But $\frac{1}{x}=a \Rightarrow \frac{1}{x}=\frac{1}{60} \Rightarrow x=60$

$$
\frac{1}{y}=b \Rightarrow \frac{1}{y}=\frac{1}{80} \Rightarrow y=80
$$

Speed of train $=60 \mathrm{~km} / \mathrm{h}$
Speed of car $=80 \mathrm{~km} / \mathrm{h}$
iii. 2 women and 5 men can together finish an embroidery work in 4 days while 3 women and 6 men can finish it in 3 days. Find the time taken by 1 woman alone and 1 man alone to finish the work.

Sol: Let time taken by 1 woman to complete the work $=x$ days
Time taken by 1 man to complete the work=y days
Work done by 1 woman in 1 day $=\frac{1}{x}$
Work done by 1 man in 1 day $=\frac{1}{y}$
2 women and 5 men can together finish work in 4 days
$\frac{2}{x}+\frac{5}{y}=\frac{1}{4} \Rightarrow \frac{8}{x}+\frac{20}{y}=1 \rightarrow$ (1)
3 women and 6 men can finish work in 3 days
$\frac{3}{x}+\frac{6}{y}=\frac{1}{3} \Rightarrow \frac{9}{x}+\frac{18}{y}=1 \rightarrow$ (2)
Let $\frac{1}{x}=a$ and $\frac{1}{y}=b$
(1) $\Rightarrow 8 a+20 b=1 \rightarrow$ (3)
(2) $\Rightarrow 9 a+18 b=1 \rightarrow$ (4)
$9 \times(3) \Rightarrow 72 a+180 b=9$
$8 \times(4) \Rightarrow 72 a+144 b=8$

$$
b=\frac{1}{36}
$$

Substitute $b=\frac{1}{36}$ in (3)
$8 a+20 \times\left(\frac{1}{36}\right)=1$
$8 a+\frac{5}{9}=1$
$8 a=1-\frac{5}{9}=\frac{4}{9}$
$a=\frac{4}{9 \times 8}=\frac{1}{18}$
But $\frac{1}{x}=a$ and $\frac{1}{y}=b$
$\frac{1}{x}=\frac{1}{18}$ and $\frac{1}{y}=\frac{1}{36}$
$x=18$ and $y=36$
Time taken by 1 woman alone $=18$ days
Time taken by 1 man alone $=36$ days

'Exercise - 4.1

3. Neha went to a 'sale' to purchase some pants and skirts. When her friend asked her how many of each she had bought, she answered "The number of skirts are two less than twice the number of pants purchased. Also the number of skirts is four less than three times the number of pants purchased." Help her friend to find how many pants and skirts Neha bought.

Sol: Let the number of plants $=x$ and number of skirts $=y$
The number of skirts is two less than twice the number of pants.
$y=2 x-2$
$2 x-y=2 \rightarrow$ (1)
The number of skirts is four less than three times the number of pants.

$$
\begin{aligned}
& y=3 x-4 \\
& 3 x-y=4 \rightarrow(2) \\
& (1)+(2) \Rightarrow \\
& 2 x-y=2 \\
& 3 x-y=4 \\
& (-) \quad(+)^{(-)} \\
& \hline-x \quad=-2
\end{aligned}
$$

$$
\therefore x=2
$$

Substitute $x=2$ in equ(1)

$$
y=2 x-2=2 \times 2-2=4-2=2
$$

\therefore Number of pants $=2$; Number of skirts $=2$.
4. $\mathbf{1 0}$ students of Class-X took part in a mathematics quiz. If the number of girls is $\mathbf{4}$ more than the number of boys then, find the number of boys and the number of girls who took part in the quiz.
Sol: Let the number of boys $=x$ and the number of girls $=y$
Total number of students $=10$
$\Rightarrow x+y=10 \rightarrow(1)$
The number of girls is 4 more than the number of boys.
$\Rightarrow y=x+4$
$\Rightarrow x-y=-4 \rightarrow(2)$
(1) $+(2)$

$x+\not y=10$
$x \neq y=-4$
$2 x=6$

$x=\frac{6}{2}=3$
Substitute $x=3$ in equ (1)
$3+y=10$
$y=10-3=7$
\therefore The number of boys $=3$ and the number of girls $=7$.
5. 5 pencils and 7 pens together cost $₹ 50$ whereas 7 pencils and 5 pens together cost $₹ 46$. Find the cost of one pencil and that of one pen.
Sol: Let the cost of pencil=₹ x
And the cost of pen=₹ y
5 pencils +7 pens $=50$
$5 x+7 y=50 \rightarrow(1)$
7 pencils +5 pens $=46$
$7 x+5 y=46 \rightarrow(2)$
$E q u(1) \times 5 \Rightarrow 25 x+35 y=250$
Equ(2) $\times 7 \Rightarrow 49 x+35 y=322$

$(-) \quad(-) \quad(-)$	
$24 x$	$=72$

$$
x=\frac{72}{24}=3
$$

Substitute $x=3$ in equ (1)
$5 \times 3+7 y=50$
$15+7 y=50$
$7 y=50-15=35$
$y=\frac{35}{7}=5$
\therefore Cost of pencil $=₹ 3$ and cost of pen $=₹ 5$.
6. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m . Find the dimensions of the garden.

Sol: Let the length of the garden $=x \mathrm{~cm}$ and width of the garden $=y \mathrm{~cm}$
Length is 4 m more than its width

$$
x=y+4 \Rightarrow x-y=4 \rightarrow(1)
$$

Half the perimeter of a rectangular garden $=36 \mathrm{~cm}$

$$
\frac{1}{2} \times 2(x+y)=36 \Rightarrow x+y=36 \rightarrow(2)
$$

$x-\not y=4$
$x+y=36$
$2 x \quad=40$

$x=\frac{40}{2}=20$
Substitute $x=20$ in equ (2)
$20+y=36$
$y=36-20=16$
\therefore Length $=20 \mathrm{~cm}$ and width $=16 \mathrm{~cm}$.
7. We have a linear equation $2 \mathrm{x}+3 \mathrm{y}-8=0$. Write another linear equation in two variables such that the geometrical representation of the pair so formed is intersecting lines. Now, write two more linear equations so that one forms a pair of parallel lines and the second forms coincident line with the given equation.
Sol: Given linear equation: $2 x+3 y-8=0$
(i) Intersecting line: $3 x+5 y+6=0$
(ii) Parallel line: $4 x+6 y+15=0$
(iii) Coincident line: $4 x+6 y-16=0$
8. The area of a rectangle gets reduced by 80 sq units if its length is reduced by 5 units and
breadth is increased by 2 units. If we increase the length by 10 units and decrease the breadth by 5 units, the area will increase by 50 sq units. Find the length and breadth of the rectangle.

Sol: Let the length of rectangle $=x$ units and breadth $=y$ units.
Area of rectangle $=x \times y=x y$ sq units
From problem
$(x-5) \times(y+2)=x y-80$
$\Rightarrow x y+2 x-5 y-10=x y-80$
$\Rightarrow 2 x-5 y=-80+10$
$\Rightarrow 2 x-5 y=-70 \rightarrow(1)$

$$
\begin{aligned}
& (x+10) \times(y-5)=x y+50 \\
& \Rightarrow x y-5 x+10 y-50=x y+50 \\
& \Rightarrow-5 x+10 y=50+50 \\
& \Rightarrow-5 x+10 y=100 \rightarrow(2)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Equ}(1) \times 2 & \Rightarrow 4 x-10 y=-140 \\
\operatorname{Equ}(2) \times 1 & \Rightarrow \frac{-5 x+10 y=100}{-x}=-40
\end{aligned}
$$

$x=40$
Substitute $x=40$ in equ (1)
$2 \times 40-5 y=-70$
$80-5 y=-70$
$5 y=80+70=150$
$y=\frac{150}{5}=30$
\therefore Length $=40 \mathrm{~cm}$ and breadth $=30 \mathrm{~cm}$.
9. In X class, if three students sit on each bench, one student will be left. If four students sit on each bench, one bench will be left. Find the number of students and the number of benches in that class.

Sol: Let the number of benches $=x$ and the number of students $=y$
From problem

$$
\begin{aligned}
& y=3 x+1 \Rightarrow 3 x-y=-1 \rightarrow(1) \\
& y=4(x-1) \Rightarrow y=4 x-4 \Rightarrow 4 x-y=4 \rightarrow(2) \\
& 3 x-y=-1 \\
& 4 x /-y=4 \\
& \frac{(-)(+)(-)}{-x}=-5 \\
& \hline
\end{aligned}
$$

$\therefore x=5$
Substitute $x=5$ in equ (1)
$3 \times 5-y=-1$
$15-y=-1$

$$
y=15+1=16
$$

The number of students $=16$ and the number of benches $=5$.

