CHAPTER

1. Father of statistics Sir Ronald Aylmer Fisher.
2. Father of Indian statistics Prasanta Chandra Mahalanobis .
3. Types of Measure of central tendency
i) Mean
ii) Mode
iii) Median

4. Mean of Ungrouped Data:
(i) $x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{n}$ are observations of the data then

$$
\text { Mean }(\overline{\mathrm{x}})=\frac{\text { sum of observations }}{\text { Number of observations }}=\frac{x_{1}+x_{2}+x_{3}+\ldots \ldots \ldots,+x_{n}}{n}=\frac{\sum x_{i}}{n}
$$

(ii) Observations are $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ and corresponding frequencies are $f_{1}, f_{2}, f_{3}, \ldots, f_{n}$ then
$\operatorname{Mean}(\bar{x})=\frac{f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}+\cdots+f_{n} x_{n}}{f_{1}+f_{2}+f_{3}+\cdots \ldots,+f_{n}}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
Example-1: Find the mean of the marks obtained by the students

Marks obtained $\left(x_{i}\right)$	10	20	36	40	50	56	60	70	72	80	88	92	95
Number of student $\left(f_{i}\right)$	1	1	3	4	3	2	4	4	1	1	2	3	1

Solution:

Marks obtained $\left(x_{i}\right)$	Number of students $(f i)$	$f_{i} x_{i}$
10	1	10
20	1	20
36	3	108
40	4	160
50	3	150
56	2	112
60	4	240
70	4	280
72	1	72
80	1	80
88	2	176
92	3	276
95	1	95
Total	$\sum f_{i}=30$	$\sum f_{i} x_{i}=1779$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =\frac{\sum f_{i} x_{i}}{\sum f_{i}} \\
& =\frac{1779}{30} \\
& =59.3
\end{aligned}
$$

The mean marks are 59.3

Mean for grouped data- Direct Method:

$\operatorname{Mean}(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$

$$
\begin{aligned}
& f_{i}=\text { frequency of } i^{\text {th }} \text { class } \\
& x_{i}=\text { class mark (mid value) of } i^{\text {th }} \text { class }
\end{aligned}
$$

Example: Find the mean of grouped data

Class interval	$10-25$	$25-40$	$40-55$	$55-70$	$70-85$	$85-100$
Number of students	2	3	7	6	6	6

Sol:

Class interval	Number of students $\left(f_{i}\right)$	Class Marks $\left(x_{i}\right)$	$f_{i} x_{i}$
$10-25$	2	17.5	35.0
$25-40$	3	32.5	97.5
$40-55$	7	47.5	332.5
$55-70$	6	62.5	375.0
$70-85$	6	77.5	465.0
$85-100$	6	92.5	555.0
Total	$\sum f_{i}=30$		$\sum f_{i} x_{i}=1860.0$

Mean for grouped data-Ássumed Mean Method:

$$
\begin{aligned}
& \operatorname{Mean}(\bar{x})=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}} \\
& \quad \begin{aligned}
& =\text { assumed mean (choose one among the } x_{i}^{\prime} \text { s). } \\
f_{i} & =\text { frequency of } i^{\text {th }} \text { class. } \\
d_{i} & =x_{i}-a . \\
x_{i} & =\text { class mark (mid value) of } i^{\text {th }} \text { class. }
\end{aligned}
\end{aligned}
$$

Example: Find the mean of grouped data

Class interval	$10-25$	$25-40$	$40-55$	$55-70$	$70-85$	$85-100$
Number of students	2	3	7	6	6	6

Sol:

Class interval	Number of students $\left(f_{i}\right)$	$\begin{gathered} \text { Class } \\ \text { Marks }\left(x_{i}\right) \end{gathered}$	$\begin{aligned} d_{i} & =x_{i}-47.5 \\ d_{i} & =x_{i}-a \end{aligned}$	$f_{i} d_{i}$	
10-25	2	17.5	-30	-60	
25-40	3	32.5	-15	-45	
40-55	7	47.5 (a)	0	0	14.5
55-70	6	62.5	15	90	$3 0 \longdiv { 4 3 5 . 0 }$
70-85	6	77.5	30	180	30
85-100	6	92.5	45	270	135 120
Total	$\sum f_{i}=30$			$\sum f_{i} d_{i}=435$	$\begin{aligned} & \hline 150 \\ & 150 \end{aligned}$
	$\sum f_{i} d_{i}$	435			0

$\operatorname{Mean}(\bar{x})=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}}=47.5+\frac{435}{30}=47.5+14.5=62$
The mean of the marks obtained by the students is 62
Mean for grouped data- Step-deviation method:

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
a & =\text { assumed mean (choose one among the } x_{i}^{\prime} s \text {). } \\
f_{i} & =\text { frequency of } i^{\text {th }} \text { class. } \\
u_{i} & =\frac{x_{i}-a}{h} . \\
x_{i} & =\text { class mark (mid value) of } i^{\text {th }} \text { class } \\
h & =\text { class size } .
\end{aligned}
$$

Example: Find the mean of grouped data using Step-deviation method.(for above problem)
Sol:

Class interval	Number of students $\left(f_{i}\right)$	Class Marks $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{x_{i}-a}{h}$ $\mathrm{~h}=15$	$f_{i} u_{i}$
$10-25$	2	17.5	-30	-2	-4
$25-40$	3	32.5	-15	-1	-3
$40-55$	7	$47.5 \rightarrow a$	0	0	0
$55-70$	6	62.5	15	1	6
$70-85$	6	77.5	30	2	12
$85-100$	6	92.5	45	3	18
Total	$\sum f_{i}=30$				$\sum f_{i} u_{i}=29$

$$
\begin{align*}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \tag{tabular}\\
& =47.5+\frac{29}{30} \times 15 \\
& =47.5+\frac{29}{2} \\
& =47.5+14.5=62
\end{align*}
$$

The mean of the marks obtained by the students is 62
Example-2: Find the mean percentage of female teachers using all the three methods.

Percentage of female teachers	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$
Number of States/U.T.	6	11	7	4	4	2	1

Sol: Take $a=50$

Percentage	Number of	x_{i}	$d_{i}=$ of female teachers C.I	States/U.T. f_{i}		$x_{i}-50$	$\frac{u_{i}=}{}$$x_{i}-50$ 10
$15-25$	6	20	-30	$f_{i} x_{i}$	$f_{i} d_{i}$	$f_{i} u_{i}$	
$25-35$	11	30	-20	-2			
$35-45$	7	40	-10	-1	30	-180	-18
$45-55$	4	50	0	0	280	-70	-7
$55-65$	4	60	10	1	200	0	0
$65-75$	2	70	20	2	240	40	4
$75-85$	1	80	30	3	140	40	4
Total	35				80	30	3

From the above table, we obtain $\sum f_{i}=35, \sum f_{i} x_{i}=1390, \sum f_{i} d_{i}=-360, \sum f_{i} u_{i}=-36$.
Using the direct method, $\bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{1390}{35}=39.71$.
Using the assumed mean method $\bar{x}=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}}=50+\frac{-360}{35}=50-10.29=39.71$.
Using the step-deviation method $\bar{x}=a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h=50+\frac{-36}{35} \times 10=39.71$.
Therefore, the mean percentage of female teachers in the primary schools of rural areas is 39.71.

Example -3: Find the mean number of wickets by choosing a suitable method.

Number of wickets	$20-60$	$60-100$	$100-150$	$150-250$	$250-350$	$350-450$
Number of bowlers	7	5	16	12	2	3

Sol:

$\begin{array}{c}\text { Number of } \\ \text { wickets }\end{array}$	$\begin{array}{c}\text { Number of } \\ \text { bowlers }\left(f_{i}\right)\end{array}$	x_{i}	$\begin{array}{c}d_{i}= \\ x_{i}-a\end{array}$	$\begin{array}{c}u_{i}=\frac{x_{i}-a}{h} \\ (h=20)\end{array}$	$f_{i} u_{i}$
$20-60$	7	40	-160	-8	-56
$60-100$	5	80	-120	-6	-30
$100-150$	16	125	-75	-3.75	-60
$150-250$	12	$200(a)$	0	0	0
$250-350$	2	300	100	5	10
$350-450$	3	400	200	10	30

So $\quad \bar{x}=a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h=200+\frac{-106}{45} \times 20=200-47.11=152.89$

Exercise-14.1:

1. Find the mean number of plants per house.

Number of plants	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of houses	1	2	1	5	6	2	3

Sol:

Class interval	Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54
$10-12$	2	11	22
$12-14$	3	13	39
	$\sum f_{i}=20$		$\sum f_{i} x_{i}=162$

$$
\begin{array}{lr}
\sum f_{i}=20, \sum f_{i} x_{i}=162 & 20 \begin{array}{c}
8.1 \\
\text { Mean }(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{162}{20}=8.1 \\
\frac{160}{20} \\
\frac{20}{0}
\end{array}
\end{array}
$$

2. Find the mean daily wages of the workers of the factory by using an appropriate method

Daily wages in Rupees	$200-250$	$250-300$	$300-350$	$350-400$	$400-450$
Number of workers	12	14	8	6	10

Sol: Class interval are large . so we use step-deviation method

Class interval	Number of workers $\left(f_{i}\right)$	$\operatorname{Class} \operatorname{mark}\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$200-250$	12	225	-1	-12
$250-300$	14	$275 \rightarrow a$	0	0
$300-350$	8	325	1	8
$350-400$	6	375	2	12
$400-450$	10	425	3	>30
	$\sum f_{i}=50$		$\sum f_{i} u_{i}=-12+50=38$	

$$
a=275, h=50, \sum f_{i}=50, \sum f_{i} u_{i}=38
$$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =275+\frac{38}{50} \times 50 \\
& =275+38 \\
& =313
\end{aligned}
$$

The mean daily wages of the workers is ₹ 313
3. The mean pocket allowance is $₹ 18$. Find the missing frequency f

Daily pocket allowance(in Rupees)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Number of children	7	6	9	13	f	5	4

Sol:

Class interval	Number of children $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$f_{i} x_{i}$			
$11-13$	7	12	84			
$13-15$	6	14	84			
$15-17$	9	16	144			
$17-19$	13	18	234			
$19-21$	f	20	$20 f$			
$21-23$	4	22	110			
$23-25$	$\sum \mathrm{f}_{\mathrm{i}}=44+f$	24	96			
						$\sum f_{i} x_{i}=752+20 f$

Given mean pocket allowance is ₹ 18

$$
\begin{aligned}
& \frac{\sum f_{i} x_{i}}{\sum f_{i}}=18 \\
& \frac{752+20 f}{44+f}=18 \\
& 752+20 f=18(44+f) \\
& 752+20 f=792+18 f \\
& 20 f-18 f=792-752 \\
& 2 f=40 \quad \Rightarrow f=\frac{40}{2} \quad \therefore f=20
\end{aligned}
$$

4. Find the mean heart beats per minute for these women, choosing a suitable method.

Number of heart beats/minute	$65-68$	$68-71$	$71-74$	$74-77$	$77-80$	$80-83$	$83-86$
Number of women	2	4	3	8	7	4	2

Sol: We choose Assume mean method

Number of heart beats/minute	Number of women $\left(f_{i}\right)$	Class $\operatorname{mark}\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$f_{i} d_{i}$
$65-68$	2	66.5	-9	-18
$68-71$	4	67.5	-6	-24
$71-74$	3	72.5	-3	-9
$74-77$	8	$75.5 \rightarrow a$	0	0
$77-80$	7	78.5	3	21
$80-83$	4	81.5	6	24
$83-86$	2	84.5	9	18
	$\sum \mathrm{f}_{\mathrm{i}}=30$		$\sum f_{i} d_{i}=-51+63=12$	

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\frac{\sum f_{i} d_{i}}{\sum f_{i}} \\
& =75.5+\frac{12}{30} \\
& =75.5+\frac{2}{5} \\
& =75.5+0.4 \\
& =75.9
\end{aligned}
$$

5. Find the mean number of oranges kept in each basket. Which method of finding the mean did you choose?

Number of oranges	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$
Number of baskets	15	110	135	115	25

Sol: We choose step-deviation method

Number of oranges	Number of baskets $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$10-14$	15	12	-10	-2	-30
$15-19$	110	17	-5	-1	-110
$20-24$	135	$22 \rightarrow a$	0	0	0
$25-29$	115	27	5	1	115
$30-34$	25	32	10	2	
	$\sum \mathrm{f}_{\mathrm{i}}=400$			$\sum f_{i} u_{i}=-140+165=25$	

$$
\begin{aligned}
a=22, h & =5, \sum f_{i}=400, \sum f_{i} u_{i}=25 \\
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =22+\frac{25}{400} \times 5 \\
& =22+\frac{16}{16} \\
& =22+0.31 \\
& =22.31
\end{aligned}
$$

. Find the mean daily expenditure on food by a suitable method.

Daily expenditure (in Rupees)	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
Number of house holds	4	5	12	2	2

Sol:

Class intervals	Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i}=\left(x_{i}-a\right)$ $\mathrm{a}=225$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$100-150$	4	125	-100	-2	-8
$150-200$	5	175	-50	-1	-5
$200-250$	12	225	0	0	0
$250-300$	2	275	50	1	2
$300-350$	2	325	100	2	4

$$
\begin{aligned}
& a=225, h=50, \sum f_{i}=25, \sum f_{i} u_{i}=-7 \\
& \begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =225+\left(\frac{-7}{25}\right) \times 5 \\
& =225+(-7) \times 2 \\
& =225-14 \\
& =211
\end{aligned}
\end{aligned}
$$

The mean daily expenditure on food is Rs. 211.
7. Find the mean concentration of SO_{2} in the air.

Concentration of SO_{2} in ppm	$0.00-0.04$	$0.04-0.08$	$0.08-0.12$	$0.12-0.16$	$0.16-0.20$	$0.20-0.24$
Frequency	4	9	9	2	4	2

Sol:

Concentration of SO_{2} in ppm(class intervals)	Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$f_{i} x_{i}$	0.0986
0.00-0.04	4	0.02	0.08	$3 0 \longdiv { 2 . 9 6 }$
0.04-0.08	9	0.06	0.54	270
0.08-0.12	9	0.10	0.90	260
0.12-0.16	2	0.14	0.28	240
0.16-0.20	4	0.18	0.72	200
0.20-0.24	2	0.22	0.44	180
	$\sum f_{i}=30$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2.9$	20

$$
\sum f_{i}=30, \quad \sum f_{i} x_{i}=2.96
$$

$\operatorname{Mean}(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{2.96}{30}=0.099$
8. Find the mean number of days a student was present out of 56 days in the term .

Number of days	$35-38$	$38-41$	$41-44$	$44-47$	$47-50$	$50-53$	$53-56$
Number of students	1	3	4	4	7	10	11

Sol:

Class intervals	Frequency $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i=}\left(x_{i}-a\right)$ $\mathrm{a}=48.5$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$35-38$	1	36.5	-12	-4	-4
$38-41$	3	39.5	-9	-3	-9
$41-44$	4	42.5	-6	-2	-8
$44-47$	4	45.5	-3	-1	-4
$47-50$	7	$48.5 \rightarrow a$	0	0	0
$20-53$	10	51.5	3	1	10
$53-56$	11	54.5	6	2	22
	$\sum f_{i}=40$			$\sum f_{i} u_{i}=-25+32=7$	

$a=48.5, h=3, \sum f_{i}=40, \sum f_{i} u_{i}=7$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =48.5+\frac{7}{40} \times 3 \\
& =48.5+\frac{21}{40} \\
& =48.5+0.5
\end{aligned}
$$

40 \begin{tabular}{|}

0.5
$\frac{21.0}{200}$
$\underline{10}$

\end{tabular}

$$
=49
$$

The mean number of days a student $=49$
9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

Literacy rate in \%	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
Number of cities	3	10	11	8	3

Sol:

Literacy rate in $\%$ (class intervals)	Number of cities $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$45-55$	3	50	-2	-6
$55-65$	10	60	-1	-10
$65-75$	11	$70 \rightarrow a$	0	0
$75-85$	8	80	1	8
$85-95$	3	90	2	6
	$\sum f_{i}=35$		$\sum f_{i} u_{i}=-16+14=-2$	

$a=70, \quad h=10, \sum f_{i}=35, \sum f_{i} u_{i}=-2$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =70+\frac{(-2)}{35} \times 10 \\
& =70-\frac{4}{7} \\
& =70-0.57=69.43
\end{aligned}
$$

\therefore The mean literacy rate $=69.43 \%$)

Mode

A mode is that varueamong the observations which occurs most frequently.
Example-4. The wickets taken by a bowler in 10 cricket matches are as follows: 2, 6, 4, 5, 0, 2, 1, 3, 2,3 . Find the mode of the data.

Sol: Arrange the observations in order

$$
0,1,2,2,2,3,3,4,5,6
$$

2 is occurs most frequently. So, the mode of this data is 2 .

Do This

1. Find the mode of the following data.
a) $5,6,9,10,6,12,3,6,11,10,4,6,7$

Sol: Arrange the observations in order

$$
3,4,5,6,6,6,6,7,9,10,10,11,12
$$

6 is occurred most frequently. So, the mode of this data is 6.
b) $20,3,7,13,3,4,6,7,19,15,7,18,3$.

Sol: Arrange the observations in order
$3,3,3,4,6,7,7,7,13,15,18,19,20$.
3 and 7 are occurred most frequently. So, the mode of this data is 3 and 7.
c) $2,2,2,3,3,3,4,4,4,5,5,5,6,6,6$

Sol: No mode
2. Is the mode always at the centre of the data?

Sol: No.
3. Does the mode change, if another observation is added to the data in Example-4. Comment.

Sol: Yes. If we add 3 the mode is changed. Mode is 2 and 3
4. If the maximum value of an observation in the data in Example 4 is changed to 8, would the mode of the data be affected? Comment.

Sol: The maximum value 6 is changed to 8 then the mode is does not changed .
MODE FOR GROUPED DATA:
Fist we locate a class with the maximum frequency, called the modal class.
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
Where $\quad l=$ lower boundary of the modal class
$f_{1}=$ frequency of the modal class
$f_{0}=$ frequency of the class preceding the modal class
$f_{2}=$ frequency of the class succeeding the modal class

$$
h=\text { size of the modal class }
$$

Example-5: Find the mode of this data.

Family size	$1-3$	$3-5$	$5-7$	$7-9$	$9-11$
Number of families	7	8	2	2	1

Solution: The maximum class frequency is 8 . So, the modal class is 3-5.

Family size	Number of families
$1-3$	$7 \rightarrow f_{0}$
$l=3-5$	$8 \rightarrow f_{1}$
$5-7$	$2 \rightarrow f_{2}$
$7-9$	2
$9-11$	1
$l=3, f_{1}=8$,	$f_{0}=7, f_{2}=2, h=2$
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$	
$=3+\left(\frac{8-7}{2 \times 8-7-2}\right) \times 2$	

$$
\begin{aligned}
& =3+\left(\frac{1}{7}\right) \times 2 \\
& =3+\frac{2}{7}==3+0.286=3.286
\end{aligned}
$$

Therefore, the mode of the data is 3.286
Example-6. The marks distribution of 30 students in a mathematics examination are given in the adjacent table. Find the mode of this data. Also compare and interpret the mode and the mean.

Class interval	$10-25$	$25-40$	$40-55$	$55-70$	$70-85$	$85-100$
Number of students	2	3	7	6	6	6

Sol:

Class interval	Number of students $\left(f_{i}\right)$	Class Marks $\left(x_{i}\right)$	$d_{i}=x_{i}-a$	$u_{i}=\frac{x_{i}-a}{h}$ $\mathrm{~h}=15$	$f_{i} u_{i}$
$10-25$	2	17.5	-30	-2	-4
$25-40$	$3 \rightarrow f_{0}$	32.5	-15	-1	-3
$40-55$	$7 \rightarrow f_{1}$	$\underbrace{}_{47.5} \rightarrow a$	0	0	0
$55-70$	$6 \rightarrow f_{2}$	62.5	15	1	6
$70-85$	6	77.5	30	2	12
$85-100$	6	92.5	45	3	18
Total	$\sum f_{i}=30$				$\sum f_{i} u_{i}=29$

Mode: The highest frequency is 7 . So the modal class is $40-45$

$$
\begin{aligned}
l=40, & f_{1}=7, f_{0}=3, f_{2}=6, h=15 \\
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =40+\left(\frac{7-3}{2 \times 7-3-6}\right) \times 15 \\
& =40+\frac{4}{5} \times 15 \\
& =40+4 \times 3 \\
& =40+12=52 \\
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =47.5+\frac{29}{30} \times 15 \\
& =47.5+\frac{29}{2}
\end{aligned}
$$

$$
=47.5+14.5=62
$$

Interpretation : The mode marks is 52 . The mean marks is 62 . So, the maximum number of students obtained 52 marks, while on an average a student obtained 62 marks.

ExERCISE - 14.2

1. Find the mode and the mean of the data given below. Compare and interpret the two measures of central tendency

Age (in years)	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of patients	6	11	21	23	14	5

Sol:

Age (in years)	Number of patients $\quad\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$f_{i} x_{i}$
$5-15$	6	10	60
$15-25$	11	20	220
$25-35$	$21 \rightarrow f_{0}$	30	630
$35-45$	$23 \rightarrow f_{1}$	40	920
$45-55$	$14 \rightarrow f_{2}$	50	700
$55-65$	5	60	300
	$\sum f_{i}=80$		$\sum f_{i} x_{i}=2830$

Mode: The highest frequency is 23 . So the modal class is $35-45$
$l=35, f_{1}=23, f_{0}=21, f_{2}=14, h=10$
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=35+\left(\frac{23-21}{2 \times 23-21-14}\right) \times 10$
$=35+\left(\frac{2}{46-35}\right) \times 10$
$=35+\frac{20}{11}=35+1.8=36.8$
$\operatorname{Mean}(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{2380}{80}=35.37$
Interpretation : Mode $=36.8$ years, Mean $=35.37$ years, Maximum number of patients admitted in the hospital are of the age 36.8 years (approx.), while on an average the age of a patient admitted to the hospital is 35.37 years.
2. The following data gives the information on the observed life times (in hours) of 225 electrical components : Determine the modal lifetimes of the components.

Lifetimes (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	38	29

Sol:

Lifetimes (in hours)	Frequency
$0-20$	10
$20-40$	35
$40-60$	$52 \rightarrow f_{0}$
$60-80$	$61 \rightarrow f_{1}$
$80-100$	$38 \rightarrow f_{2}$
$100-120$	29

The highest frequency is 61 . So the modal class is 60-80

$$
\begin{aligned}
& l=60, f_{1}=61, f_{0}=52, f_{2}=38, h=20 \\
& \begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =60+\left(\frac{61-52}{2 \times 61-52-38}\right) \times 20 \\
& =60+\left(\frac{9}{122-90}\right) \times 20 \\
& =60+\frac{9 \times 20}{32} \\
& =60+\frac{45}{8}=60+5.625=65.625 \text { hours }
\end{aligned}
\end{aligned}
$$

3. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure :
$\left.\begin{array}{|l|c|c|c|c|c|c|c|c|}\hline \begin{array}{l}\text { Expenditure } \\ \text { (in rupees) }\end{array} & \begin{array}{l}1000- \\ 1500\end{array} & \begin{array}{l}1500- \\ 2000\end{array} & \begin{array}{l}2000- \\ 2500\end{array} & \begin{array}{l}2500- \\ 3000\end{array} & \begin{array}{l}3000- \\ 3500\end{array} & \begin{array}{l}3500- \\ 4000\end{array} & 4000- & 4500\end{array} \begin{array}{l}4500- \\ 5000\end{array}\right]$

Sol:

Expenditure (in rupees)	Number of families $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$1000-1500$	$24 \rightarrow f_{0}$	1250	-4	-96
$1500-2000$	$40 \rightarrow f_{1}$	1750	-3	-120
$2000-2500$	$33 \rightarrow f_{2}$	2250	-2	-66
$2500-3000$	28	2750	-1	-28
$3000-3500$	30	$3250 \rightarrow a$	0	0
$3500-4000$	22	3750	1	22
$4000-4500$	16	4250	2	32
$4500-5000$	7	4750	3	21
	$\sum f_{i}=200$		$\sum f_{i} u_{i}=-310+75=-235$	

Mode: The highest frequency is 40 . So the modal class is 1500-2000
$l=1500, f_{1}=40, f_{0}=24, f_{2}=33, h=500$
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$

$$
\begin{aligned}
& =1500+\left(\frac{40-24}{2 \times 40-24-33}\right) \times 500 \\
& =1500+\left(\frac{16}{80-57}\right) \times 500 \\
& =1500+\frac{16 \times 500}{23} \\
& =1500+\frac{8000}{23}=1500+347.83=1847.83
\end{aligned}
$$

Mean:

$$
\begin{aligned}
a=3250 & \quad h=500, \sum f_{i}=200, \sum f_{i} u_{i}=-235 \\
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
= & 3250+\left(\frac{-235}{200}\right) \times 500 \\
= & 3250-\frac{235 \times 5}{2} \\
= & 3250-\frac{1175}{2}=3250-587.5=2662.5
\end{aligned}
$$

4. Find the mode and mean of this data. Interpret the two measures

Number of students	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$	$45-50$	$50-55$
Number of States	3	8	9	10	3	0	0	2

Sol:

Number of students	Number of States	Class mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$15-20$	3	17.5	-3	-9
$20-25$	8	22.5	-2	-16
$25-30$	$9 \rightarrow f_{0}$	27.5	-1	-9
$30-35$	$10 \rightarrow f_{1}$	$32.5 \rightarrow a$	0	0
$35-40$	$3 \rightarrow f_{2}$	37.5	1	3
$40-45$	0	42.5	2	0
$45-50$	0	47.5	3	0
$50-55$	2	52.5	4	8
	$\sum f_{i}=35$		$\sum f_{i} u_{i}=-34+11=-23$	

Mode: The highest frequency is 10 . So the modal class is $30-35$

$$
\begin{aligned}
& l=30, f_{1}=10, f_{0}=9, f_{2}=3, h=5 \\
& \begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =30+\left(\frac{10-9}{2 \times 10-9-3}\right) \times 5 \\
& =30+\left(\frac{1}{20-12}\right) \times 5
\end{aligned}
\end{aligned}
$$

$$
=30+\frac{5}{8}=30+0.625=30.625
$$

Mean:
$a=32.5, \quad h=5, \sum f_{i}=35, \sum f_{i} u_{i}=-23$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
& =32.5+\left(\frac{-23}{35}\right) \times 5 \\
& =32.5-\frac{23}{7}=32.5-3.3=29.2
\end{aligned}
$$

Interpretation : Mode : 30.625, Mean = 29.2. Most states/U.T. have a student teacher ratio of 30.6 and on an average, this ratio is 29.2.
5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches. Find the mode of the data.

Runs	$\begin{aligned} & 3000- \\ & 4000 \end{aligned}$	$\begin{aligned} & 4000- \\ & 5000 \end{aligned}$	$\begin{aligned} & 5000- \\ & 6000 \end{aligned}$	$\begin{aligned} & 6000- \\ & 7000 \end{aligned}$	$\begin{aligned} & 7000- \\ & 8000 \end{aligned}$	$\begin{aligned} & 8000- \\ & 9000 \end{aligned}$	$\begin{aligned} & 9000- \\ & 10000 \end{aligned}$	$\left\lvert\, \begin{aligned} & 10000- \\ & 11000 \end{aligned}\right.$
Number of batsmen	4	18	9	7	6	3	1	1

Sol:

Runs	Number of batsmen
$3000-4000$	$4 \rightarrow f_{0}$
$4000-5000$	$18 \rightarrow f_{1}$
$5000-6000$	$9 \rightarrow f_{2}$
$6000-7000$	7
$7000-8000$	6
$8000-9000$	3
$9000-10000$	1
$10000-11000$	1

The highest frequency is 18 . So the modal class is 4000-5000

$$
\begin{aligned}
& l=4000, f_{1}=18, f_{0}=4, f_{2}=9, h=1000 \\
& \begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =4000+\left(\frac{18-4}{2 \times 18-4-9}\right) \times 1000 \\
& =4000+\left(\frac{14}{36-13}\right) \times 1000 \\
& =4000+\frac{14000}{23}=4000+608.7=4608.7 \text { runs }
\end{aligned}
\end{aligned}
$$

6. A student noted the number of cars passing through a spot on a road for 100 periods, each of 3 minutes, and summarised this in the table given below. Find the mode of the data.

Number of cars	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	7	14	13	12	20	11	15	8

Sol:

Number of cars	Frequency
$0-10$	7
$10-20$	14
$20-30$	13
$30-40$	$12 \rightarrow f_{0}$
$40-50$	$20 \rightarrow f_{1}$
$50-60$	$11 \rightarrow f_{2}$
$60-70$	15
$70-80$	8

The highest frequency is 20 . So the modal class is $40-50$
$l=40, f_{1}=20, f_{0}=12, f_{2}=11, h=10$

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =40+\left(\frac{20-12}{2 \times 20-12-11}\right) \times 10
\end{aligned}
$$

$$
=40+\left(\frac{8}{40-23}\right) \times 10=40+\frac{80}{17}=40+4.7=44.7 \mathrm{cars}
$$

MEDIAN OF UNGROUPED DATA

1. Median is the value of the middle - most observation in the data.
2. we first arrange the data values or the observations in ascending order.Then
(i) If n is odd, the median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ observation.
(ii) If n is even, the median will be the average of the $\left(\frac{n}{2}\right)^{\text {th }}$ and $\left(\frac{n}{2}+1\right)^{\text {th }}$ observations
(i.e) If n is even, the median $=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { observation }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { observation }}{2}$

Example: Find median of the given data.

Marks obtained	20	29	28	33	42	38	43	25
Number of students	6	28	24	15	2	4	1	20

Sol: First, we arrange the marks in ascending order and prepare a frequency table. To find the position of these middle values, we construct cumulative frequency.

Marks obtained	Number of students	Cumulative frequency
20	$6+20=26$	6
upto 25	$26+24=50$	26
upto 28	$50+28=78$	50
upto 29	$78+15=93$	78
upto 33	$93+4=97$	93
upto 38	$97+2=99$	97
upto 42	$99+1=100$	99
upto 43		100

Here' $n^{\prime}=100$. Which is even
$\frac{n}{2}=\frac{100}{2}=50$ and $\frac{n}{2}+1=50+1=51$
$50^{\text {th }}$ observation is 28 and 51 st observation is 29
Median $=\frac{28+29}{2}=\frac{57}{2}=28.5$

MEDIAN OF GROUPED DATA:

The class whose cumulative frequency exceeds $\frac{n}{2}$ for the first time. This is called the median class.
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
where $l=$ lower boundary of median clas,
$n=$ number of observations,
$c f=$ cumulative frequency of class preceding the median class,
$f=$ frequency of median class,
$h=$ class size (size of the median class).

Example: Find median of the given data

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Number of students	5	3	4	3	3	4	7	9	7	8

Sol:

Marks	Number of students (f)	Cumulative frequency $(c f)$
$0-10$	5	5
$10-20$	3	8
$20-30$	4	12
$30-40$	3	15
$40-50$	3	18
$50-60$	4	$22 \rightarrow c f$
$60-70$	$7 \rightarrow f$	29
$70-80$	9	38
$80-90$	7	45
$90-100$	8	53
	$\mathrm{n}=53$	

$$
\frac{n}{2}=\frac{53}{2}=26.5
$$

From cumulative frequency $60-70$ is the median class.
$l=60, \quad c f=22, f=7, h=10$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =60+\left(\frac{26.5-22}{7}\right) \times 10 \\
& =60+\left(\frac{4.5}{7}\right) \times 10 \\
& =60+\frac{45}{7}=60+6.43=66.43
\end{aligned}
$$

Example - 7: Find the median height of the girls.

Height (in cm)	Number of girls
Less than 140	4
Less than 145	11
Less than 150	29
Less than 155	40
Less than 160	46
Less than 165	51

$l \nmid$| Class intervals | Frequency | Cumulative
 frequency |
| :--- | :---: | :---: |
| Below 140 | 4 | 4 |
| $140-145$ | 7 | $11 \rightarrow$ |
| $145-150$ | $18 \rightarrow f$ | 29 |
| $150-155$ | 11 | 40 |
| $155-160$ | 6 | 46 |
| $160-165$ | 5 | 51 |

$\mathrm{n}=51, \frac{n}{2}=\frac{11}{2}=25.5$. So median class is 145-150
$l=145, \quad c f=11, f=18, h=5$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =145+\left(\frac{25.5-11}{18}\right) \times 5 \\
& =145+\frac{14.5 \times 5}{18} \\
& =145+\frac{72.5}{18}=145+4.03=149.03
\end{aligned}
$$

So, the median height of the girls is 149.03 cm .
Example-8. The median of the following data is 525 . Find the values of x and y, if the total frequency is 100 . Here, CI stands for class interval and Fr for frequency.

CI	$0-100$	$100-$ 200	$200-$ 300	$300-$ 400	$400-$ 500	$500-$ 600	$600-$ 700	$700-$ 800	$800-$ 900	$900-$ 1000
Fr	2	5	x	12	17	20	y	9	7	4

Sol:

Class intervals	Frequency	Cumulative frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	X	$7+\mathrm{x}$
$300-400$	12	$19+\mathrm{x}$
$400-500$	17	$36+\mathrm{x}$
$500-600$	20	$56+\mathrm{x}$
$600-700$	Y	$56+\mathrm{x}+\mathrm{y}$
$700-800$	9	$65+\mathrm{x}+\mathrm{y}$
$800-900$	7	$72+\mathrm{x}+\mathrm{y}$
$900-1000$	4	$76+\mathrm{x}+\mathrm{y}$

Given $\mathrm{n}=100$
So, $76+x+y=100$
$x+y=100-76$
$x+y=24$
The median is 525 , which lies in the class $500-600$
So, $\mathrm{l}=500, \mathrm{f}=20, \mathrm{cf}=36+\mathrm{x}, \mathrm{h}=100$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$525=500+\left(\frac{50-[36+x]}{20}\right) \times 100$
$525=500+(50-36-x) \times 5$
$525-500=(14-x) \times 5$
$\frac{25}{5}=14-x$
$\Rightarrow 5=14-x$
$\Rightarrow x=14-5$
$\Rightarrow x=9$
From (1) : $9+y=24 \Rightarrow y=24-9 \Rightarrow y=15$
Which measure would be best suited for a particular requirement.

1. The mean is the most frequently used measure of central tendency because it takes into account all the observations, and lies between the extremes.
2. extreme values in the data affect the mean.
3. where individual observations are not important, especially extreem values, and we wish to find out a 'typical' observation, the median is more appropriate.
4. finding the typical productivity rate of workers, average wage in a country, etc. These are situations where extreme values may exist. So, rather than the mean, we take the median as a better measure of central tendency.
5. In situations which require establishing the most frequent value or most popular item, the mode is the best choice,
Example: To find the most popular T.V. programme being watched, the consumer item in greatest demand, the colour of the vehicle used by most of the people, etc

Exercise - 14.3

1. Find the median, mean and mode of the data and compare them

Monthly consumption (in units)	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
Number of consumers	4	5	13	20	14	8	4

Sol:

Monthly consumption	Number of consumers	Class mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$	Cumulative frequency

$65-85$	4	75	-3	-12	4
$85-105$	5	95	-2	-10	9
$105-125$	$13 \rightarrow f_{0}$	115	-1	-13	$22 \rightarrow c f$
$125-145$	$20 \rightarrow f_{1}(\mathrm{f})$	$135 \rightarrow a$	0	0	42
$145-165$	$14 \rightarrow f_{2}$	155	1	14	56
$165-185$	8	175	2	16	64
$185-205$	4	195	3	12	68
	$n=\sum f_{i}=68$		$\sum f_{i} u_{i}=-35+42=7$		

Mean:

$$
\begin{aligned}
a=135, & \sum f_{i} u_{i}=7, \sum f_{i}=68, h=20 \\
\operatorname{Mean}(\bar{x})= & a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times h \\
= & 135+\left(\frac{7}{68}\right) \times 20 \\
= & 135+\frac{7 \times 5}{17} \\
= & 135+\frac{35}{17}=135+2.06=137.06
\end{aligned}
$$

Mode: Highest frequency is 20 . So, modal class $=125-145$
$l=125, f_{1}=20, f_{0}=13, f_{2}=14, h=20$
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$

$$
=125+\left(\frac{20-13}{2 \times 20-13-14}\right) \times 20
$$

$$
=125+\left(\frac{7 \times 20}{40-27}\right)
$$

$$
=125+\frac{140}{13}
$$

$$
=125+10.77=135.77
$$

Median:
$\mathrm{n}=68, \frac{n}{2}=\frac{68}{2}=34$. So median class is 125-145
$l=125, \quad c f=22, \quad f=20, h=20$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =125+\left(\frac{34-22}{20}\right) \times 20 \\
& =125+12=137
\end{aligned}
$$

Median $=137$ units, Mean $=137.06$ units, Mode $=135.77$ units. The three measures are approximately the same in this case.
2. If the median of 60 observations, given below is 28.5 , find the values of x and y.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	5	x	20	15	y	5

Sol:

Class Interval	Frequency	Cumulative Frequency
$0-10$	5	5
$10-20$	X	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	Y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$
	$\mathrm{n}=45+\mathrm{x}+\mathrm{y}$	

Given that $\mathrm{n}=60$. So, $45+x+y=60$
$x+y=60-45 \Rightarrow x+y=15----$
(1)

Since Median=28.5.
Therefore Median class=20-30
$l=20, \frac{n}{2}=30, f=20, c f=5+x, h=10$
$8.5 \times 2=25-x$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$17=25-x$
$x=25-17$
$28.5=20+\left(\frac{30-[5+x]}{20}\right) \times 10$
$\therefore x=8$
$28.5=20+\left(\frac{30-5-x}{2}\right)$
$28.5-20=\frac{25-x}{2}$
$8.5=\frac{25-x}{2}$
From(1) $x+y=15$
$8+y=15$
$y=15-8$
$y=7$
3. A life insurance agent found the following data about distribution of ages of 100 policy holders. Calculate the median age.

Age (in years)	Below 20	Below 25	Below 30	Below 35	Below 40	Below 45	Below 50	Below 55	Below 60
Number of policy holders	2	6	24	45	78	89	92	98	100

Sol:

Age(in years)	Number of policy holders (Frequency)	Cumulative Frequency
Below 20	2	2

$20-25$	4	6
$25-30$	18	24
$30-35$	21	$45 \rightarrow c f$
$35-40$	$33 \rightarrow f$	78
$40-45$	11	89
$45-50$	3	92
$50-55$	6	98
$55-60$	2	100
	$n=\sum f_{i}=100$	

$\mathrm{n}=100, \frac{n}{2}=\frac{100}{2}=50$. So median class is $35-40$
$l=35, \quad c f=45, \quad f=33, \quad h=5$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$=35+\left(\frac{50-45}{33}\right) \times 5$
$=35+\frac{5 \times 5}{33}$
$=35+\frac{25}{33}=35+0.76=35.76$
4. Find the median length of the leaves.

Length (in mm)	$118-126$	$127-135$	$136-144$	$145-153$	$154-162$	$163-171$	$172-180$
Number of leaves	3	5	9	12	5	4	2

Sol:

Length mm)	(in Number of leaves	Cumulative Frequency
$118-126$	3	3
$127-135$	5	8
$136-144$	9	$17 \rightarrow c f$
$145-153$	$12 \rightarrow f$	29
$154-162$	5	34
$163-171$	4	38
$172-180$	2	40
	$n=\sum f_{i}=40$	

$\mathrm{n}=40, \frac{n}{2}=\frac{40}{2}=20$. So median class is $35-40$
$l=\frac{144+145}{2}=\frac{289}{2}=144.5, \quad c f=17, f=12, h=9$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$

$$
\begin{aligned}
& =144.5+\left(\frac{20-17}{12}\right) \times 9 \\
& =144.5+\frac{3 \times 9}{12} \\
& =144.5+\frac{9}{4}=144.5+2.25=146.75
\end{aligned}
$$

The median length of the leaves $=146.75 \mathrm{~mm}$
5. The following table gives the distribution of the life-time of 400 neon lamps. Find the median life time of a lamp.

Life time (in hours)	$1500-$ 2000	$2000-$ 2500	$2500-$ 3000	$3000-$ 3500	$3500-$ 4000	$4000-$ 4500	$4500-$ 5000
Number of lamps	14	56	60	86	74	62	48

Sol:

Life time(in hours)	Number of lamps	Cumulative frequency
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	$130 \rightarrow c f$
$3000-3500$	$86 \rightarrow f$	216
$3500-4000$	74	290
$4000-4500$	62	352
$4500-5000$	48	400
	$n=\sum f_{i}=400$	

$\mathrm{n}=400, \frac{n}{2}=\frac{400}{2}=200$. So median class is 3000-3500
$l=3000, \quad c f=130, f=86, h=500$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$=3000+\left(\frac{200-130}{86}\right) \times 500$
$=3000+\frac{70 \times 250}{43}$
$=3000+\frac{17500}{43}=3000+406.98=3406.98$
The median life time of a lamp $=3406.98$ hours.
6. Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames

Number of letters	$1-4$	$4-7$	$7-10$	$10-13$	$13-16$	$16-19$
Number of surnames	6	30	40	16	4	4

Sol:

Number of letters	Number of surnames	Class mark $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$	Cumulative frequency
$1-4$	6	2.5	-2	-12	6
$4-7$	$30 \rightarrow f_{0}$	5.5	-1	-30	$36 \rightarrow c f$
$7-10$	$40 \rightarrow f_{1}(\mathrm{f})$	$8.5 \rightarrow a$	0	0	76
$10-13$	$16 \rightarrow f_{2}$	11.5	1	16	92
$13-16$	4	14.5	2	8	96
$16-19$	4	17.5	3	12	100
	$n=\sum f_{i}=100$		$\sum f_{i} u_{i}=-42+36=-6$		

Median:
$\mathrm{n}=100, \frac{n}{2}=\frac{100}{2}=50$. So median class is $7-10$.
$l=7, \quad c f=36, \quad f=40, \quad h=3$
Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$=7+\left(\frac{50-36}{40}\right) \times 3$
$=7+\frac{14 \times 3}{40}$
$=7+\frac{21}{20}=7+1.05=8.05$
Mean:
$a=8.5, \quad \sum f_{i} u_{i}=-6, \sum f_{i}=100, h=3$

$$
\begin{aligned}
\operatorname{Mean}(\bar{x}) & =a+\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \times \\
& =8.5+\left(\frac{-6}{100}\right) \times 3 \\
& =8.5-\frac{18}{100}=8.5-0.18=8.32 .
\end{aligned}
$$

Mode: Highest frequency is 40. So, modal class $=7-10$

$$
\begin{aligned}
& l=7, f_{1}=40, f_{0}=30, f_{2}=16, h=3 \\
& \begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =7+\left(\frac{40-30}{2 \times 40-30-16}\right) \times 3 \\
& =7+\frac{10 \times 3}{80-46} \\
& =7+\frac{30}{34}=7+\frac{15}{17}=7+0.88=7.88
\end{aligned}
\end{aligned}
$$

Median $=8.05$, Mean $=8.32$, Modal size $=7.88$
7. The distribution below gives the weights of 30 students of a class. Find the median weight of the
students.

Weight (in kg)	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Number of students	2	3	8	6	6	3	2

Sol:

Weight (in kg)	Number of students	Cumulative frequency
$40-45$	2	2
$45-50$	3	5
$50-55$	8	$13 \rightarrow c f$
$55-60$	$6 \rightarrow f$	19
$60-65$	6	25
$65-70$	3	28
$70-75$	2	30
	$n=\sum f_{i}=30$	

$\mathrm{n}=30, \frac{n}{2}=\frac{30}{2}=15$. So median class is 55-60.
$l=55, \quad c f=13, f=6, \quad h=5$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =55+\left(\frac{15-13}{6}\right) \times 5 \\
& =55+\frac{2 \times 5}{6}=55+\frac{5}{3}=55+1,67=56.67
\end{aligned}
$$

Median weight=56.67 kg.

GRAPHICAL REPRESENTATION OF CUMULATIVE FREQUENCY DISTRIBUTION:

1. Representing a cumulative frequency distribution graphically as a cumulative frequency curve, or an ogive of the less than type and of the more than type.
2. While drawing ogives, class boundaries are taken on X-axis and corresponding cumulative frequencies are taken on Y-axis.
3. The median of grouped data can be obtained graphically as the x-coordinate of the point of intersection of the two ogives of the data.

Less than cumulative frequency curve:
Take the upper boundaries of the class intervals as x-coordinate and their corresponding lees than cumulative frequencies as y-coordinate. Plot the points on a graph and join them by a free hand smooth curve. The curve we get is called a less than cumulative frequency curve, or an ogive.

More than cumulative frequency curve:
Take the lower boundaries of the class intervals as x-coordinate and their corresponding more than cumulative frequencies as y-coordinate. Plot the points on a graph and join them by a free hand smooth curve. The curve we get is called a more than cumulative
frequency curve, or an ogive.

Example-9. The annual profits earned by 30 shops in a locality give rise to the following distribution: Draw both ogives for the data above. Hence obtain the median profit.

Profit (in lakhs)	Number of shops (frequency)
More than or equal to 5	30
More than or equal to 10	28
More than or equal to 15	16
More than or equal to 20	14
More than or equal to 25	10
More than or equal to 30	7
More than or equal to 35	3

Sol:

Classes	frequency	Upper boundary	Less than cumulative frequency	points	Lower boundary	Greater than cumulative frequency	points
$5-10$	2	10	2	\downarrow	$(10,2)$	-5	30
$10-15$	12	15	14	$(15,14)$	10	28	$(5,30)$
$15-20$	2	20	16	$(20,16)$	15	16	$(10,28)$
$20-25$	4	25	20	$(25,20)$	20	14	$(20,16)$
$25-30$	3	30	23	$(30,23)$	25	10	$(25,10)$
$30-35$	4	35	27	$(35,27)$	30	7	$(30,7)$
$35-40$	3	40	30	$(40,30)$	35	3	\uparrow

Median=17.5

Limits

Exercise - 14.4

1. The following distribution gives the daily income of 50 workers of a factory

Daily income (in Rupees)	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$
Number of workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution, and draw
its ogive.
Sol:

Daily income (in Rupees)	Number of workers	Upper boundary	Less than cumulative frequency	points
$250-300$	12	300	12	$(300,12)$
$300-350$	14	350	26	$(350,26)$
$350-400$	8	400	34	$(400,34)$
$400-450$	6	450	40	$(450,40)$
$450-500$	10	500	50	$(500,50)$

Limits

2. During the medical check-up of 35 students of a class, their weights were recorded as follows : Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.

Weight (in kg)	Number of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Sol:

Weight (in kg)	Number of students(f)	Less than cumulative frequency(y)	Upper bound(x)	Point(x,y)
$0-38$	0	0	38	$(38,0)$
$38-40$	3	3	40	$(40,3)$
$40-42$	2	5	42	$(42,5)$
$42-44$	4	9	44	$(44,9)$
$44-46$	5	$14 \rightarrow c f$	46	$(46,14)$
$46-48$	$14 \rightarrow f$	28	48	$(48,28)$
$48-50$	4	32	50	$(50,32)$
$50-52$	3	35	52	$(52,35)$

$\frac{n}{2}=\frac{35}{2}=17.5$
Now Y-coordinate $=17.5$. From graph Corresponding X- coordinate $=46.5$.
\therefore Median=46.5
Median (Using formula):
$\frac{n}{2}=\frac{35}{2}=17.5$. So median class $=46-48$.
$l=46, \quad c f=14, f=14, h=2$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \times 2 \\
& =46+\frac{3.5}{7}=46+0.5=46.5
\end{aligned}
$$

3. The following table gives production yield per hectare of wheat of 100 farms of a village

Production yield (Qui/Hec)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farmers	2	8	12	24	38	16

Change the distribution to a more than type distribution, and draw its ogive.
Sol:

Production yield (Qui/Hec)	Number of farmers(f)	Eower boundary	Greater than cumulative frequency	points
$50-55$	2	50	100	$(50,100)$
$55-60$	8	55	98	$(55,98)$
$60-65$	12	60	90	$(60,90)$
$65-70$	24	65	78	$(65,78)$
$70-75$	38	70	54	$(70,54)$
$75-80$	16	75	16	$(75,16)$

Limits

THANK YOU
 BALABHADRA SURESH

