CHAPTER
12

1. The line of sight is the line drawn from the eye of an observer to the point in the object viewed by the observer.
2. "The line of sight is above the horizontal line and angle between the line of sight and the horizontal line is called angle of elevation".
3. "The line of sight is below the horizontal line and angle between the line of sight and the horizontal line is called angle of depression".

4. Theodolites are used to measure angles of elevation or depression in the process of survey.

Example-1. The top of a clock tower is observed at angle of elevation of α and the foot of the tower is at the distance of d meters from the observer. Draw the diagram for this data.

Sol: Height of clock tower=AB
Observer point=C
Distance between foot of the tower and
observer $=\mathrm{BC}=\mathrm{d} \mathrm{m}$
Angle of elevation $=\angle A C B=\alpha$

Example-2. Rinky observes a flower on the ground from the balcony of the first floor of a building at an angle of depression β°. The height of the first floor of the building is x meters. Draw the diagram for this data.

Solution :
The height of the first floor of the building $=\mathrm{AB}=x \mathrm{~m}$

Flower point $=\mathrm{C}$, Angle of depression $=\angle D A C=\beta$
$\angle D A C=\angle A C B=\beta$ (Alternate interior angles)

Example-3. A large balloon has been tied with a rope and it is floating in the air. A person has observed the balloon from the top of a building at angle of elevation of θ_{1} and foot of the rope at an angle of depression of θ_{2}. The height of the building is h feet. Draw the diagram for this data.

Solution:
Length of rope $=A C$
Building height $=\mathrm{DE}=h$ feet
Angle of elevation $=\angle B D C=\theta_{1}$
Angle of depression $=\angle A D B=\theta_{2}$

$\angle A D B=\angle D A E=\theta_{2}$ (Alternate interior angles)

Do This

1. Draw diagram for the following situations:
(i) A person is flying a kite at an angle of elevation α and the length of thread from his hand to kite is ' l '.

Sol:
Length of thread $=\mathrm{BC}=l$
Angle of elevation $=\angle A C B=\alpha$

(ii) A person observes two banks of a river at angles of depression θ_{1} and $\theta_{2}\left(\theta_{1}<\theta_{2}\right)$ from the top of a tree of height h which is at a side of the river. The width of the river is ' d '. Solution:

Height of tree $=A B=h$
Width of river $=\mathrm{CD}=d$

Think - Discuss

1. You are observing top of your school building at an angle of elevation α from a point which is at d meter distance from foot of the building. Which trigonometric ratio would you like to consider to find the height of the building?

Sol: Height of the building $=A B=\mathrm{h} \mathrm{m}$
Distance from foot of the building to observing point $=A C=d \mathrm{~m}$

We have adjacent side .We want opposite side
So we consider tangent ratio
$\tan \alpha=\frac{A B}{A C}=\frac{h}{d} \Rightarrow h=d \times \tan \alpha$

2. A ladder of length x meter is leaning against a wall making angle θ with the ground. Which trigonometric ratio would you like to consider to find the height of the point on the wall at which the ladder is touching?
Sol: Length of ladder $=\mathrm{BC}=x \mathrm{~m}$
The height of the point on the wall at which the ladder is touching= We have hypotenuse. We want opposite side So we consider sine ratio
 $\sin \theta=\frac{h}{x} \Rightarrow h=x \times \sin \theta$
Example-4. A boy observed the top of an electric pole at an angle of elevation of 60° when the observation point is 8 meters away from the foot of the pole. Find the height of the pole

Sol: Height of electric pole $=A B=h m$
Observation point from the foot of the pole $=A C=8 \mathrm{~m}$
Angle of elevation $=\angle A C B=60^{\circ}$
$\tan 60^{\circ}=\frac{A B}{A C}$

$\sqrt{3}=\frac{h}{8} \Rightarrow h=8 \sqrt{3} \mathrm{~m}$
Example-5. Rajender observes a person standing on the ground from a helicopter at an angle of depression 45‥ If the helicopter flies at a height of 50 meters from the ground, what is the distance of the person from Rajender?
Sol: Height of helicopter flies from the ground $=A B=50 \mathrm{~m}$ $\angle P B C=\angle A C B=45^{\circ}$ (Alternate interior angles) distance of the person from Rajender $=\mathrm{BC}=x \mathrm{~m}$
$\sin 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\frac{1}{\sqrt{2}}=\frac{50}{x}$

$x=50 \sqrt{2}$
The distance from the person to Rajendar is $50 \sqrt{2} \mathrm{~m}$

Exercise - 12.1

1. A tower stands vertically on the ground. From a point which is 15 meter away from the foot of the tower, the angle of elevation of the top of the tower is $45{ }^{\circ}$. What is the height of the tower?

Sol: Height of the tower $=A B=h m$
Observing point $=C$
$\mathrm{AC}=15 \mathrm{~m}$
Angle of elevation $=\angle A C B=45^{\circ}$
$\tan 45^{\circ}=\frac{A B}{A C}$

$1=\frac{h}{15} \Rightarrow h=15$
The height of the tower $=15 \mathrm{~m}$
2. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground by making 300 angle with the ground. The distance between the foot of the tree and the top of the tree on the ground is 6 m . Find the height of the tree before falling down.

Sol: Let length of remaining part $=A B=y m$
Length of broken part $=\mathrm{BC}=x \mathrm{~m}$
$\mathrm{AC}=6 \mathrm{~m}$
Angle of elevation $=\angle A C B=30^{\circ}$

$\cos 30^{\circ}=\frac{A C}{B C}$
$\frac{\sqrt{3}}{2}=\frac{6}{x} \Rightarrow x \times \sqrt{3}=6 \times 2 \Rightarrow x=\frac{12}{\sqrt{3}}=\frac{12 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{12 \times \sqrt{3}}{3}=4 \sqrt{3}$
$\tan 30^{\circ}=\frac{A B}{A C}$
$\frac{1}{\sqrt{3}}=\frac{y}{6} \Rightarrow y \times \sqrt{3}=6 \times 1 \Rightarrow y=\frac{6}{\sqrt{3}}=\frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{6 \times \sqrt{3}}{3}=2 \sqrt{3}$
$x+y=4 \sqrt{3}+2 \sqrt{3}=6 \sqrt{3}$
The height of the tree before falling down $=6 \sqrt{3} \mathrm{~m}$
3. A contractor wants to set up a slide for the children to play in the park. He wants to set it up at the height of 2 m and by making an angle of 30° with the ground. What should be the length of the slide?

Sol: Height of slide $=A B=2 \mathrm{~m}$
Length of slide $=B C=x m$

Angle of elevation $=\angle A C B=30^{\circ}$
$\sin 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\frac{1}{2}=\frac{2}{x} \Rightarrow x=2 \times 2=4$

The length of slide $=4 \mathrm{~m}$
4. Length of the shadow of a 15 meter high pole is $5 \sqrt{3}$ meters at 7 o'clock in the morning. Then, what is the angle of elevation of the Sun rays with the ground at the time?

Sol: Height of the pole $=A B=15 \mathrm{~m}$
Length of shadow $=\mathrm{AC}=15 \sqrt{3} \mathrm{~m}$
Let the angle of elevation $=\angle A C B=\theta$
$\tan \theta=\frac{A B}{A C}=\frac{15}{5 \sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3}$

$\Rightarrow \theta=60^{\circ}$
The angle of elevation of the Sun rays with the ground $=60^{\circ}$
5. You want to erect a pole of height 10 m with the support of three ropes. Each rope has to make an angle 30° with the pole. What should be the total length of the rope required.

Sol: Height of pole $=A B=10 \mathrm{~m}$
Let length of each rope $=\mathrm{BC}=x \mathrm{~m}$
Angle made by the rope with the pole $=30^{\circ}$
$\cos 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$

$\frac{\sqrt{3}}{2}=\frac{10}{x} \Rightarrow \sqrt{3} \times x=2 \times 10 \Rightarrow x=\frac{20}{\sqrt{3}}$
The length of each rope $=\frac{20}{\sqrt{3}} m$
Required length of rope $=3 \times \frac{20}{\sqrt{3}}=\sqrt{3} \times \sqrt{3} \times \frac{20}{\sqrt{3}}=20 \sqrt{3} \mathrm{~m}$
6. Suppose you are shooting an arrow from the top of a building at a height of 6 m to a target on the ground at an angle of depression of 60°. What is the distance between you and the object?
Sol: Height of building $=A B=6 \mathrm{~m}$
Target place $=C$
Angle of depression $=60^{\circ}$
$\angle P B C=\angle A C B=60^{\circ}$ (Alternate interior angles)

$\sin 60^{\circ}=\frac{A B}{B C}$
$\frac{\sqrt{3}}{2}=\frac{6}{x}$
$\Rightarrow x=\frac{12}{\sqrt{3}}=\frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{12 \times \sqrt{3}}{3}=4 \sqrt{3}$
Required distance $=4 \sqrt{3} \mathrm{~m}$
7. An electrician wants to repair an electric connection on a pole of height 9 m . He needs to reach 1.8 m below the top of the pole to do repair work. What should be the length of the ladder which he should use, when he climbs it at an angle of 60° with the ground? What will be the distance between foot of the ladder and foot of the pole?

Sol: Height of pole $=A D=9 \mathrm{~m}$
Electrician reached point $=\mathrm{B}$
$\mathrm{BD}=1.8 \mathrm{~m}$ and $\mathrm{AB}=9-1.8=7.2 \mathrm{~m}$
Let length of ladder $=\mathrm{BC}=x \mathrm{~m}$ and
Required distance $=\mathrm{AC}=d m$
$\sin 60^{\circ}=\frac{A B}{B C}$

$\frac{\sqrt{3}}{2}=\frac{7.2}{x}$
$\Rightarrow x=\frac{7.2 \times 2}{\sqrt{3}}=\frac{7.2 \times 2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{7.2 \times 2 \times \sqrt{3}}{3}=2.4 \times 2 \times \sqrt{3}=4.8 \times 1.732=8.3136 \mathrm{~m}$
$\tan 60^{\circ}=\frac{A B}{A C} \Rightarrow \sqrt{3}=\frac{7.2}{d}$
$\Rightarrow d=\frac{7.2}{\sqrt{3}}=\frac{7.2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{7.2 \times \sqrt{3}}{3}=2.4 \sqrt{3}=2.4 \times 1.732=4.1568 \mathrm{~m}$
8. A boat has to cross a river. It crosses the river by making an angle of 60° with the bank of the river due to the stream of the river and travels a distance of 600 m to reach the another side of the river. What is the width of the river?

Sol: Let width of the river $=A C=x \mathrm{~m}$
Distance travelled by boat $=\mathrm{BC}=600 \mathrm{~m}$
Angle made by boat $=\angle A C B=60^{\circ}$
$\cos 60^{\circ}=\frac{A C}{B C}$

$\frac{1}{2}=\frac{x}{600}$
$\Rightarrow x=\frac{600}{2}=300$
The width of the river $=300 \mathrm{~m}$
9. An observer of height 1.8 m is 13.2 m away from a palm tree. The angle of elevation of the top of the tree from his eyes is $45 \circ$. What is the height of the palm tree?

Sol: Height of observer $=C D=A E=1.8 \mathrm{~m}$
Distance of observer from palm tree $=\mathrm{AC}=\mathrm{DE}=13.2 \mathrm{~m}$
$\tan 45^{\circ}=\frac{B E}{D E}$
$1=\frac{x}{13.2}$
$\Rightarrow x=13.2$

The height of the palm tree $=\mathrm{AB}=x+1.8=13.2+1.8=15 m$
10. In the adjacent figure, $\mathrm{AC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{BAC}=30^{\circ}$. Find the area of the triangle.

Sol: Let $B D \perp A C$
From $\triangle A D B$
$\sin 30^{\circ}=\frac{B D}{A B}$
$\frac{1}{2}=\frac{B D}{5}$

$B D=\frac{5}{2} m$
Area of $\triangle A B C=\frac{1}{2} \times A C \times B D=\frac{1}{2} \times 6 \times \frac{5}{2}=\frac{30}{4}=7.5 \mathrm{~m}^{2}$

Solution for Two Triangles

Ex: Suppose you are observing the top of the palm tree at an angle of elevation 45․ The angle of elevation changes to 30° when you move 11 m away from the tree. Find height of the tree.

Sol: Let the height of the tree $=\mathrm{CD}=h \mathrm{~m}, B C=x \mathrm{~m}$.
Observer places $=\mathrm{A}, \mathrm{B}$
$A B=11 m \quad, A C=(x+11) m$
From $\triangle B C D$
$\tan 45^{\circ}=\frac{C D}{B C}$

$1=\frac{h}{x} \Rightarrow x=h \rightarrow(1)$

From $\triangle A C D$
$\tan 30^{\circ}=\frac{C D}{A C}$
$\frac{1}{\sqrt{3}}=\frac{h}{11+x}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{h}{11+h} \quad($ from $(1) x=h)$
$\Rightarrow \sqrt{3} h=11+h$
$\Rightarrow \sqrt{3} h-h=11$
$\Rightarrow h(\sqrt{3}-1)=11$
$\Rightarrow h=\frac{11}{\sqrt{3}-1}$
The height of the palm tree $=\frac{11}{\sqrt{3}-1} \mathrm{~m}$
Example-6. Two men on either side of a temple of 30 meter height observe its top at the angles of elevation 30° and 60 orespectively. Find the distance between the two men.

Sol: Height of the temple $=B D=30 \mathrm{~m}$
Observers places $=\mathrm{A}, \mathrm{C}$
$\angle B A D=30^{\circ}, \angle B C D=60^{\circ}$
Let $A D=x m$ and $C D=d m$
From $\triangle B A D$
$\tan 30^{\circ}=\frac{B D}{A D}$

$\frac{1}{\sqrt{3}}=\frac{30}{x}$
$x=30 \sqrt{3}$
From $\triangle B C D$
$\tan 60^{\circ}=\frac{B D}{C D}$
$\sqrt{3}=\frac{30}{d}$
$d=\frac{30}{\sqrt{3}}=\frac{30 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{30 \times \sqrt{3}}{3}=10 \sqrt{3}$
Distance between the persons $=x+d=30 \sqrt{3}+10 \sqrt{3}=40 \sqrt{3} \mathrm{~m}$
Example-7. A straight highway leads to the foot of a tower. Ramaiah standing at the top of the tower
observes a car at an angle of depression 30․ The car is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60 . Find the time taken by the car to reach the foot of the tower from this point

Sol: Let the distance travelled by the car in 6 seconds $=$
$\mathrm{AB}=\mathrm{x}$ meters
Heights of the tower $=\mathrm{CD}=\mathrm{h}$ meters
The remaining distance to be travelled by the car $=\mathrm{BC}$
$=\mathrm{d}$ meters

$A C=(x+d) m$
$\angle \mathrm{PDA}=\angle \mathrm{DAC}=30^{\circ}$ (Alternate interior angles)
$\angle \mathrm{PDB}=\angle \mathrm{DBC}=60^{\circ}$ (Alternate interior angles)

From $\triangle B C D$
$\tan 60^{\circ}=\frac{C D}{B C}$
$\sqrt{3}=\frac{h}{d}$
$h=\sqrt{3} d \rightarrow(1)$
From $\triangle B C D$
$\tan 30^{\circ}=\frac{C D}{A C}$
$\frac{1}{\sqrt{3}}=\frac{h}{x+d}$

$$
h=\frac{x+d}{\sqrt{3}} \rightarrow(2)
$$

From (1) \& (2)

$$
\begin{aligned}
& \sqrt{3} d=\frac{x+d}{\sqrt{3}} \\
& \sqrt{3} \times \sqrt{3} d=x+d \\
& 3 d=x+d \\
& 3 d-d=x \\
& 2 d=x \\
& d=\frac{x}{2}
\end{aligned}
$$

Time taken to travel ' x ' meters $=6$ seconds.
Time taken to travel the distance of ' d ' meter $=\frac{x}{2}=\frac{6}{2}=3$ seconds

Exercise - 12.2

1. A TV tower stands vertically on the side of a road. From a point on the other side directly opposite to the tower, the angle of elevation of the top of tower is 60°. From another point 10 m away from this point, on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the road.

Sol: Let the height of the tower $=\mathrm{CD}=\mathrm{h} \mathrm{m}$
Width of the road $=x \mathrm{~m}$
Observation points $=\mathrm{A}, \mathrm{B}$
$A B=10 m, \quad A C=(10+x) m$
From $\triangle B C D$
$\tan 60^{\circ}=\frac{C D}{B C}$

$\sqrt{3}=\frac{h}{x} \Rightarrow h=\sqrt{3} x \rightarrow(1)$
From $\triangle \mathrm{ACD}$
$\tan 30^{\circ}=\frac{C D}{A C}$
$\frac{1}{\sqrt{3}}=\frac{h}{10+x} \Rightarrow h=\frac{10+x}{\sqrt{3}} \rightarrow$ (2)
From (1) \& (2)
$\sqrt{3} x=\frac{10+x}{\sqrt{3}}$
$\sqrt{3} \times \sqrt{3} x=10+x$
$3 x=10+x$
$3 x-x=10$
$2 x=10$
$x=\frac{10}{2}=5$
From (1), $h=\sqrt{3} x=\sqrt{3} \times 5=5 \sqrt{3}$
\therefore The width of road $=5 \mathrm{~m}$
The height of tower $=5 \sqrt{3} \mathrm{~m}$
2. A 1.5 m tall boy is looking at the top of a temple which is 30 meter in height from a point at certain distance. The angle of elevation from his eye to the top of the crown of the temple increases from 30° to 60° as he walks towards the temple. Find the distance he walked towards the temple.
Sol: Height of the boy $=A B=C F=1.5 \mathrm{~m}$
Height of the temple $=C D=30 \mathrm{~m}$
Let the distance walked $=\mathrm{BE}=d m$
$D F=30-1.5=28.5 m$
From $\triangle D E F$
$\tan 60^{\circ}=\frac{D F}{E F}$

$\sqrt{3}=\frac{28.5}{x} \Rightarrow x=\frac{28.5}{\sqrt{3}}=\frac{28.5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{28.5 \sqrt{3}}{3}=9.5 \sqrt{3} \rightarrow(1)$
From \triangle BFD
$\tan 30^{\circ}=\frac{D F}{B F}$
$\frac{1}{\sqrt{3}}=\frac{28.5}{x+d}$
$\Rightarrow x+d=28.5 \sqrt{3}$
$\Rightarrow 9.5 \sqrt{3}+d=28.5 \sqrt{3}$
$\Rightarrow d=28.5 \sqrt{3}-9.5 \sqrt{3}=19 \sqrt{3}$
Distance walked by the boy towards the temple $=19 \sqrt{3}=19 \times 1.732=32.908 \mathrm{~m}$
3. A statue stands on the top of a 2 m tall pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45°. Find the height of the statue.

Sol: Height of the pedestal $=A B=2 \mathrm{~m}$
Let the height of statue $=\mathrm{BD}=\mathrm{hm}$
$A D=(h+2) m$
The point of observation $=\mathrm{C}$
Let $\mathrm{AC}=x \mathrm{~m}$
From $\triangle \mathrm{ABC}$
$\tan 45^{\circ}=\frac{A B}{A C}$
$1=\frac{2}{x}$

From \triangle ADC

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{A D}{A C} \\
& \sqrt{3}=\frac{h+2}{x} \\
& \sqrt{3}=\frac{h+2}{2}
\end{aligned}
$$

$h+2=2 \sqrt{3}$
$h=2 \sqrt{3}-2=2(\sqrt{3}-1)=2(1.732-1)=2 \times 0.732=1.454 \mathrm{~m}$
\therefore The height of the statue $=1.454 \mathrm{~m}$
4. From the top of a building, the angle of elevation of the top of a cell tower is 60° and the angle of depression to its foot is 45 . If distance of the building from the tower is 7 m , then find the height of the tower.

Sol: Let the height of building $=\mathrm{AB}=\mathrm{CE}=x \mathrm{~m}$
The height of tower $=\mathrm{CD}=\mathrm{h} \mathrm{m}$
Distance between tower and building $=A C=B E=7 \mathrm{~m}$
From $\triangle A B C$
$\tan 45^{\circ}=\frac{A B}{A C}$
$1=\frac{x}{7} \Rightarrow x=7$
From $\triangle \mathrm{BDE}$

$\tan 60^{\circ}=\frac{D E}{B E}$
$\sqrt{3}=\frac{h-x}{7}$
$h-x=7 \sqrt{3}$
$h-7=7 \sqrt{3}$
$h=7 \sqrt{3}+7=7(\sqrt{3}+1)=7(1.732+1)=7 \times 2.732=19.124 \mathrm{~m}$
\therefore The height of the tower $=19.124 \mathrm{~m}$
5. A wire of length 18 m had been tied with electric pole at an angle of elevation 30° with the ground. As it is covering a long distance, it was cut and tied at an angle of elevation $60{ }^{\circ}$ with the ground. How much length of the wire was cut?
Sol: Length of wire $=18 \mathrm{~m}$
Let height of the pole $=\mathrm{AB}=\mathrm{hm}$
From $\triangle B A C$
$\sin 30^{\circ}=\frac{h}{18}$
$\frac{1}{2}=\frac{h}{18}$
$h=\frac{18}{2}=9 \rightarrow(1)$

From $\triangle B A D$
$\sin 60^{\circ}=\frac{h}{x}$
$\frac{\sqrt{3}}{2}=\frac{h}{x}$
$\frac{\sqrt{3}}{2}=\frac{9}{x}$
$x=\frac{18}{\sqrt{3}}=\frac{18}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{18 \sqrt{3}}{3}=6 \sqrt{3}=6 \times 1.732=10.392 \mathrm{~m}$
The length of the wire removed $=18-x=18-10.392=7.608 m$
6. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60. . If the tower is 30 m high, find the height of the building.
Sol: Let height of the building $=\mathrm{AB}=\mathrm{hm}$
The height of the tower $=C D=30 \mathrm{~m}$
$\mathrm{AC}=\mathrm{dm}$
From \triangle ADC
$\tan 60^{\circ}=\frac{30}{d}$

$\sqrt{3}=\frac{30}{d} \Rightarrow d=\frac{30}{\sqrt{3}}$
From $\triangle B A C$
$\tan 30^{\circ}=\frac{h}{d}$
$\frac{1}{\sqrt{3}}=\frac{h}{d}$
$h=d \times \frac{1}{\sqrt{3}}=\frac{30}{\sqrt{3}} \times \frac{1}{\sqrt{3}}=\frac{30}{3}=10$
\therefore The height of the building $=10 \mathrm{~m}$
7. Two poles of equal heights are standing opposite to each other on either side of the road, which is 120 feet wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

Sol: Let height of the poles $=A B=C D=h$ feet
Observation point=E
The distance between two poles $=\mathrm{AC}=120$ feet
Let $\mathrm{AE}=\mathrm{d}$ feet then $\mathrm{CE}=(120-d)$ feet
Fom \triangle BAE
$\tan 60^{\circ}=\frac{h}{d}$
$\sqrt{3}=\frac{h}{d} \Rightarrow h=d \sqrt{3} \rightarrow(1)$

from $\triangle D C E$
$\tan 30^{\circ}=\frac{h}{120-d}$
$\frac{1}{\sqrt{3}}=\frac{h}{120-d} \Rightarrow h=\frac{120-d}{\sqrt{3}} \rightarrow$ (2)
From (1) \& (2)
$d \sqrt{3}=\frac{120-d}{\sqrt{3}}$
$d \sqrt{3} \times \sqrt{3}=120-d$
$3 d=120-d$
$4 d=120$
$d=30$
$h=d \sqrt{3}=30 \sqrt{3}=30 \times 1.731=51.96$
\therefore The height of the pole $=51.96$ feet

The distances of the point from the poles $=30$ feet, 90 feet
8. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m , find the height of the tower from the base of the tower and in the same straight line with it are complementary.
Sol: Let the height of the tower $=\mathrm{h}$
Observation points=C,D
$\mathrm{AC}=4 \mathrm{~m}, \mathrm{AD}=9 \mathrm{~m}$
Let $\angle A C B=\theta$ then $\angle A D B=90-\theta$
From $\triangle \mathrm{BAC}$
$\tan \theta=\frac{h}{4} \rightarrow(1)$
From $\triangle B A D$
$\tan (90-\theta)=\frac{h}{9}$
$\cot \theta=\frac{h}{9} \Rightarrow \tan \theta=\frac{9}{h} \rightarrow(2)$

From (1) \& (2)
$\frac{h}{4}=\frac{9}{h} \Rightarrow h^{2}=36 \Rightarrow h=6 m$
\therefore The height of the tower $=6 \mathrm{~m}$
9. The angle of elevation of a jet plane from a point A on the ground is 60 . After a flight of 15 seconds, the angle of elevation changes to $\mathbf{3 0}$. If the jet plane is flying at a constant height of $1500 \sqrt{3}$ meter, find the speed of the jet plane. $(\sqrt{3}=1.732)$

Sol: Jet plane flying height from ground $=B E=C D=1500 \sqrt{3} \mathrm{~m}$
From $\triangle A B E$
$\tan 60^{\circ}=\frac{B E}{A E}$
$\sqrt{3}=\frac{1500 \sqrt{3}}{x}$
$x=1500$
From $\triangle A C D$
$\tan 30^{\circ}=\frac{C D}{A C}$

$\frac{1}{\sqrt{3}}=\frac{1500 \sqrt{3}}{x+d}$
$x+d=1500 \sqrt{3} \times \sqrt{3}=1500 \times 3=4500$
$1500+d=4500 \Rightarrow d=3000$
The jet plane travels a distance of 3000 m in 15 seconds
The speed of the jet plane $=\frac{\text { distance }}{\text { time }}=\frac{3000}{15}=200 \mathrm{~m} / \mathrm{s}$

