CHAPTER

6

IX-MATHEMATICS-NCERT

6. LINES AND ANGLES (NOTES)

PREPARED BY: BALABHADRA SURESH

1. A part (or portion) of a line with two end points is called a line-segment
2. The line segment $A B$ is denoted by $\overline{A B}$
3. A part of a line with one end point is called a ray.
4. The ray AB is denoted by $\overrightarrow{A B}$.

5. The line AB is denoted by $\overleftrightarrow{A B}$
6. Sometimes small letters $\mathrm{l}, \mathrm{m}, \mathrm{n}$, etc. will be used to denote lines.
7. If three or more points lie on the same line, they are called collinear points; otherwise they are called non-collinear points.
8. An angle is formed when two rays originate from the same end point. The rays making an angle are called the arms of the angle and the end point is called the vertex of the angle
9. The angle between 0^{0} and 90^{0} is called acute angle.
10. The angle 90° is called right angle
11. The angle between 90° and 180° is called obtuse angle.
12. The angle 180° is called straight angle.
13. The angle between 180° and 360° is called reflex angle.

Name	Acute angle	Right angle	Obtuse angle	Straight angle	Reflex angle	Complete angle
Measure	$0^{0}<x<90^{0}$	$y=90^{\circ}$	$\mathbf{9 0}^{0}<\mathrm{z}<180^{0}$	$s=180^{0}$	$\begin{aligned} & 180^{0}<t \\ & <360^{0} \end{aligned}$	$\boldsymbol{u}=\mathbf{3 6 0}{ }^{\text { }}$
Illustration						

14. Complementary angles: Two angles whose sum is 90° are called complementary angles.
15. Supplementary angles: Two angles whose sum is 180° are called supplementary angles.
16. Adjacent angles: Two angles are adjacent, if they have a common vertex, a common arm and their non-common arms are on different sides of the common arm.

Fig. 6.3 : Linear pair of angles

Fig. 6.2 : Adjacent angles
17. Linear pair of angles: the sum of two adjacent angles is 180°, then they are called a linear pair of angles.
18. vertically opposite angles: If $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersect at 0 then $\angle A O C$ is vertically opposite to $\angle B O D$ and $\angle A O D$ is vertically opposite to $\angle B O C$

Fig. 6.4 : Vertically opposite angles
19. Intersecting Lines and Non-intersecting Lines:

(i) Intersecting lines

(ii) Non-intersecting (parallel) lines
20. Axiom 6.1 : If a ray stands on a line, then the sum of two adjacent angles so formed is 180°
21. Axiom 6.2 : If the sum of two adjacent angles is 180°, then the non-common arms of the angles form a line.

Theorem 6.1 : If two lines intersect each other, then the vertically opposite angles are equal Proof: let AB and CD be two lines intersecting at 0 .

Two pairs of vertically opposite angles are
(i) $\angle \mathrm{AOC}$ and $\angle \mathrm{BOD}$ (ii) $\angle \mathrm{AOD}$ and $\angle \mathrm{BOC}$.

Now, ray OA stands on line CD
$\angle \mathrm{AOC}+\angle \mathrm{AOD}=180^{\circ}($ Linear pair axiom $) \rightarrow$ (1)

Now, ray OD stands on line $A B$
$\angle \mathrm{AOD}+\angle \mathrm{BOD}=180^{\circ}($ Linear pair axiom $\left.)\right) \rightarrow(2)$
From (1) and (2): $\angle \mathrm{AOC}+\angle \mathrm{AOD}=\angle \mathrm{AOD}+\angle \mathrm{BOD}$

$$
\angle \mathrm{AOC}=\angle \mathrm{BOD}
$$

Similarly, we can prove $\angle A O D=\angle B O C$.
Example 1 : In Fig. 6.9, lines $P Q$ and $R S$ intersect each other at point 0 . If $\angle P O R: \angle R O Q=5: 7$, find all the angles

Sol: Given $\angle \mathrm{POR}: \angle \mathrm{ROQ}=5: 7$
Let $\angle \mathrm{POR}=5 x$ and $\angle \mathrm{ROQ}=7 x$
$\angle \mathrm{POR}+\angle \mathrm{ROQ}=180^{\circ}$ (Linear pair of angles)
$5 \mathrm{x}+7 \mathrm{x}=180^{\circ}$

$12 \mathrm{x}=180^{\circ}$
$x=\frac{180^{0}}{12}=15^{0}$
$\angle P O R=5 x=5 \times 15^{0}=75^{0}$
$\angle R O Q=7 x=7 \times 15^{0}=105^{\circ}$
Now $\angle \mathrm{POS}=\angle \mathrm{ROQ}=105^{\circ}$ (Vertically opposite angles)
$\angle \mathrm{SOQ}=\angle \mathrm{POR}=75^{\circ}$ (Vertically opposite angles)
Example 2 : In Fig. 6.10, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of $\angle \mathrm{POS}$ and $\angle S O Q$, respectively. If $\angle P O S=x$, find $\angle R O T$

Sol: Given \angle POS $=x$

$$
\begin{aligned}
& \angle \mathrm{POS}+\angle \mathrm{SOQ}=180^{\circ}(\text { Linear pair of angles }) \\
& \mathrm{x}+\angle \mathrm{SOQ}=180^{\circ} \\
& \angle \mathrm{SOQ}=180^{\circ}-\mathrm{x}
\end{aligned}
$$

Ray OR and ray OT are angle bisectors of $\angle \mathrm{POS}$ and $\angle \mathrm{SOQ}$
$\angle \mathrm{ROS}=\frac{1}{2} \times \angle \mathrm{POS}$ and $\angle \mathrm{SOT}=\frac{1}{2} \times \angle \mathrm{SOQ}$
\angle ROS $=\frac{1}{2} \times x$ and \angle SOT $=\frac{1}{2} \times\left(180^{\circ}-x\right)$
\angle ROS $=\frac{x}{2}$ and \angle SOT $=90^{\circ}-\frac{x}{2}$
$\angle R O T=\angle R O S+\angle S O T=\frac{x}{2}+90^{\circ}-\frac{x}{2}=90^{\circ}$
Example 3 : In Fig. 6.11, OP, OQ, OR and OS are four rays. Prove that $\angle \mathrm{POQ}+\angle \mathrm{QOR}+\angle \mathrm{SOR}+\angle \mathrm{POS}$ $=360^{\circ}$

Sol: Let us produce ray OQ backwards to a point T
TOQ is a line. So, $\angle \mathrm{TOP}+\angle \mathrm{POQ}=180^{\circ}$ (Linear pair axiom) \rightarrow (1)
Similarly $\angle \mathrm{TOS}+\angle \mathrm{SOQ}=180^{\circ}$ (Linear pair axiom) \rightarrow (2)
But $\angle \mathrm{SOQ}=\angle \mathrm{SOR}+\angle \mathrm{QOR}$
So, (2) becomes $\angle \mathrm{TOS}+\angle \mathrm{SOR}+\angle \mathrm{QOR}=180^{\circ} \rightarrow$ (3)
(1) + (3) we get

$\angle \mathrm{TOP}+\angle \mathrm{POQ}+\angle \mathrm{TOS}+\angle \mathrm{SOR}+\angle \mathrm{QOR}=180^{\circ}+180^{\circ}=360^{\circ} \rightarrow$ (4)
But $\angle \mathrm{TOP}+\angle \mathrm{TOS}=\angle \mathrm{POS}$
Therefore, (4) becomes $\angle \mathrm{POQ}+\angle \mathrm{QOR}+\angle \mathrm{SOR}+\angle \mathrm{POS}=360^{\circ}$

EXERCISE 6.1

1. In Fig. 6.13, lines AB and CD intersect at 0 . If $\angle \mathrm{AOC}+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex \angle COE.

Sol: $\angle A O C=\angle B O D$ (Vertically opposite angles)
$x=40^{\circ}$
$\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$

$40^{0}+y=70^{0}$
$y=70^{0}-40^{0}$
$y=30^{0}$
$x+y+z=180^{\circ}$ (Linear angles)
$70^{0}+z=180^{0}$
$z=180^{0}-70^{0}$
$z=110^{0} \Rightarrow \angle C O E=110^{0}$
Reflex $\angle \mathrm{COE}=360^{\circ}-\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at 0 . If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Sol: $\mathrm{a}: \mathrm{b}=2: 3$
Let $a=2 x$ and $b=3 x$
$a+b=90^{\circ} \Rightarrow 2 x+3 x=90^{\circ} \Rightarrow 5 x=90^{\circ} \Rightarrow x=\frac{90^{0}}{5}=18^{\circ}$
$a=2 x=2 \times 18^{0}=36^{0}$ and $b=3 x=3 \times 18^{0}=54^{0}$
$b+c=180^{0}$ (Linear pair)
$54^{0}+c=180^{0}$
$c=180^{\circ}-54^{0}$
$c=126^{0}$
3. In Fig. 6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Sol: $\quad \angle \mathrm{PQR}=\angle \mathrm{PRQ}=x$
$\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$ (Linear pair)
$\angle \mathrm{PQS}+x=180^{\circ} \rightarrow$ (1)
$\angle P R T+\angle \mathrm{PRQ}=180^{\circ}$ (Linear pair)
$\angle P R T+x=180^{\circ} \rightarrow(2)$

From (1) and (2)
$\angle P Q S+\mathrm{x}=\angle P R T+\mathrm{x}$
$\angle \mathrm{PQS}=\angle \mathrm{PRT}$
4. In Fig. 6.16, if $x+y=w+z$, then prove that AOB is a line

Sol: $(x+y)+(z+w)=360^{\circ}$ (Complete angle)
if $x+y=w+z$ then
$(x+y)+(x+y)=360^{\circ}$
$2(x+y)=360^{\circ}$

$(x+y)=\frac{360^{0}}{2}=180^{0}$
$\therefore A O B$ is a line
5. In Fig. 6.17, POQ is a line. Ray $O R$ is perpendicular to line PQ . $O S$ is another ray lying between rays OP and OR . Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.
Sol: $\quad \angle \mathrm{ROQ}+\angle \mathrm{ROP}=180^{\circ}$ (Linear pair)
But $\angle \mathrm{ROQ}=90^{\circ}$
So, $\angle \mathrm{ROP}=90^{\circ}$
$x+y=90^{\circ}$
$2(x+y)=2 \times 90^{\circ}$

$2 x+2 y=180^{\circ} \rightarrow(1)$
$y+z=180^{\circ} \rightarrow(2)($ Linear pair)
$2 x+2 y=y+z$
$2 x=y+z-2 y$
$2 x=z-y \Rightarrow x=\frac{1}{2}(z-y)$
$\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$
6. It is given that $\angle \mathrm{XYZ}=64^{\circ}$ and XY is produced to point P . Draw a figure from the given information. If ray YQ bisects $\angle \mathrm{ZYP}$, find $\angle \mathrm{XYQ}$ and reflex $\angle \mathrm{QYP}$.
Sol: $\angle \mathrm{XYZ}+\angle \mathrm{ZYP}=180^{\circ}$ (linear pair)
$64^{\circ}+\angle Z Y P=180^{\circ}$
$\angle \mathrm{ZYP}=180^{\circ}-64^{0}$
$\angle \mathrm{ZYP}=116^{0}$
If ray YQ bisects $\angle \mathrm{ZYP}$ then
$\angle \mathrm{ZYQ}=\angle \mathrm{QYP}=\frac{1}{2} \times \angle \mathrm{ZYP}=\frac{1}{2} \times 116^{0}=58^{\circ}$
$\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}=64^{\circ}+58^{\circ}=122^{0}$
Reflex $\angle \mathrm{QYP}=360^{\circ}-\angle \mathrm{QYP}=360^{\circ}-58^{\circ}=302^{\circ}$
Lines Parallel to the Same Line
Lines which are parallel to the same line are parallel to each other.

If $l \| m$ and $l \| n$ then $m \| n$
If f two parallel lines l and m are cut by a transversal then
(i) Each pair of corresponding angles are equal in measure.
$\angle 1=\angle 5 ; \angle 2=\angle 6 ; \angle 3=\angle 7 ; \angle 4=\angle 8$
(ii) Each pair of alternate interior angles are equal.

$$
\angle 3=\angle 6 ; \angle 4=\angle 5
$$

(iii) Each pair of interior angles on the same side of the transversal are supplementary. $\angle 3+\angle 5=180^{\circ} ; \angle 4+\angle 6=180^{\circ}$
(iv) Each pair of exterior angles on the same side of the transversal are supplementary $\angle 1+\angle 7=180^{\circ} ; \angle 2+\angle 8=180^{\circ}$

Example 4 : In Fig. 6.19, if $P Q\left|\mid R S, \angle M X Q=135^{\circ}\right.$ and $\angle M Y R=40^{\circ}$, find $\angle X M Y$
Sol: Draw a line AB parallel to line PQ
$P Q \| A B$ and $X M$ is transversal
$x+135^{\circ}=180^{\circ}$ (Co - interior angles are supplementary)
$x=180^{\circ}-135^{0}$
$x=45^{0}$

$y=40^{\circ}$ (Alternate interior angles)
$\angle \mathrm{XMY}=\mathrm{x}+\mathrm{y}=45^{\circ}+40^{\circ}=85^{\circ}$
Example 5 : If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.

Sol: A transversal $A D$ intersects $P Q$ and $R S$ at points B and C respectively.
$\overrightarrow{B E}$ is the bisector of $\angle \mathrm{ABQ}$ and $\overrightarrow{C G}$ is the bisector of $\angle B C S$; and $\overrightarrow{B E} \| \overrightarrow{C G}$.
$\angle \mathrm{ABE}=\frac{1}{2} \angle \mathrm{ABQ}$ and $\angle \mathrm{BCG}=\frac{1}{2} \angle \mathrm{BCS}$

But $\mathrm{BE} \| \mathrm{CG}$ and AD is the transversal.
Therefore, $\angle \mathrm{ABE}=\angle \mathrm{BCG}$ (Corresponding angles axiom)
$\frac{1}{2} \angle \mathrm{ABQ}=\frac{1}{2} \angle \mathrm{BCS}$
$\angle \mathrm{ABQ}=\angle \mathrm{BCS}$
Corresponding angles are equal. From Converse of corresponding angles axiom PQ || RS
Example 6 : In Fig. 6.22, $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$. Also $\mathrm{EA} \perp \mathrm{AB}$. If $\angle \mathrm{BEF}=55^{\circ}$, find the values of x, y and Z.

Sol: CD || EF and DE is transversal
$y+55^{\circ}=180^{\circ}$ (Co-interior angles are supplementary)
$\mathrm{y}=180^{\circ}-55^{\circ}=125^{\circ}$
$\mathrm{AB}|\mid \mathrm{CD}$ and BD is transversal
$\mathrm{x}=\mathrm{y}$ (corresponding angles)

$x=125^{\circ}$
$\mathrm{AB}|\mid \mathrm{EF}$ and AE is transversal.
$\angle \mathrm{EAB}+\angle \mathrm{FEA}=180^{\circ}$ (Co-interior angles are supplementary)
$90^{\circ}+z+55^{\circ}=180^{\circ}$
$z+145^{\circ}=180^{\circ}$
$z=180^{\circ}-145^{\circ}$
$z=35^{\circ}$

EXERCISE 6.2

1. In Fig. 6.23, if $A B \| C D, C D| | E F$ and $y: z=3: 7$, find x.

Sol:y: $z=3: 7$
Let $y=3 a$ and $z=7 a$
But $x=z$ (Alternate interior angles)
$x=7 a$
$x+y=180^{\circ}$ (co - interior angles are supplementary)
$7 a+3 a=180^{0}$

$10 a=180^{\circ}$
$a=\frac{180^{0}}{10}=18^{0}$
$x=z=7 a=7 \times 18^{0}=126^{0}$
$y=3 a=3 \times 18^{0}=54^{0}$
2. In Fig. 6.24, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Sol: Given EF $\perp \mathrm{CD}$
$\angle F E D=\angle F E C=90^{\circ}$
$\mathrm{AB} \| \mathrm{CD}$ and GE transversal
$\angle A G E=\angle G E D$ (Alternate interior angles)
But $\angle \mathrm{GED}=126^{\circ}$

$\angle A G E=126^{\circ}$
$\angle G E F=\angle \mathrm{GED}-\angle F E D=126^{\circ}-90^{\circ}=36^{\circ}$
$\angle F G E+\angle A G E=180^{\circ}$ (Linear pair)
$\angle F G E+126^{\circ}=180^{\circ}$
$\angle F G E=180^{\circ}-126^{\circ}=54^{\circ}$
3. In Fig. 6.25, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.

Sol: $P Q \| S T$ and $Q R$ is transversal
$x+110^{0}=180^{\circ}$ (Co interior angles are supplementary)
$x=180^{\circ}-110^{0}=70^{0}$
similarly $y+130^{\circ}=180^{\circ}$
$y+130^{\circ}=180^{\circ}$
$y=180^{\circ}-130^{\circ}=50^{0}$
$x+y+z=180^{\circ}$ (Linear angles)
$70^{0}+50^{0}+z=180^{0}$

$120^{\circ}+z=180^{0}$
$z=180^{\circ}-120^{\circ}=60^{\circ}$
$\angle Q R S=60^{\circ}$
4. In Fig. 6.26, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .

Sol: AB || CD and PQ is transversal
$x=50^{\circ}$ (Alternate interior angles)
$\mathrm{AB}|\mid C D$ and $P R$ is transversal
$y+50^{0}=127^{\circ}$ (Alternate interior angles)
$y=127^{\circ}-50^{\circ}=77^{0}$

5. In Fig. 6.27, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along $C D$. Prove that $A B \| C D$

Sol: Draw BL and CM perpendicular to PQ
$B L \| C M$ and $B C$ is transversal
$\angle L B C=\angle M C B \rightarrow(1)$ (Alternate interior angles)
But Angle of incidence $=$ Angle of reflection
$\angle \mathrm{ABL}=\angle \mathrm{LBC}$ and $\angle \mathrm{MCB}=\angle \mathrm{MCD} \rightarrow$ (2)
From (1) and (2)

$\angle \mathrm{ABL}=\angle \mathrm{MCD} \rightarrow(3)$
(1) $+(3) \Rightarrow \angle \mathrm{LBC}+\angle \mathrm{ABL}=\angle \mathrm{MCB}+\angle \mathrm{MCD}$
$\angle \mathrm{ABC}=\angle \mathrm{BCD}$
Pair of alternate interior angles are equal
$\therefore A B \| C D$

