CHAPTER

4

IX-MATHEMATICS-NCERT

4. LINEAR EQUATIONS IN TWO VARIABLES (Notes)

PREPARED BY: BALABHADRA SURESH

1. If a linear equation has two variables then it is called a linear equation in two variables.
2. The general form of linear equation in two variables x, y is $a x+b y+c=0$. Where a, b, c are real numbers, and a, b are not both zero.
3. The process of finding solution(s) is called solving an equation .
4. A linear equation in two variables has infinitely many solutions. Every solution of the linear equation can be represented by a unique point on the graph of the equation.
5. The graphs of $x=a$ and $y=a$ are lines parallel to the y-axis and x-axis, respectively

Example 1: Write each of the following equations in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and indicate the values of a, b and c in each case:
(i) $2 x+3 y=4.37$

Sol: $2 x+3 y=4.37 \Rightarrow 2 x+3 y-4.37=0$

$$
a=2, b=3, c=-4.37
$$

(ii) $x-4=\sqrt{3} y$

Sol: $x-4=\sqrt{3} y \Rightarrow x-\sqrt{3} y-4=0$

$$
a=1, b=-\sqrt{3}, c=-4
$$

(iii) $\mathbf{4}=\mathbf{5 x}-\mathbf{3 y}$

Sol: $5 x-3 y-4=0$
$a=5, b=-3, c=-4$
(iv) $\mathbf{2 x}=\boldsymbol{y}$

Sol: $2 x-y=0$

$$
a=2, b=-1, c=0
$$

Example 2 : Write each of the following as an equation in two variables:
(i) $x=-5$

Sol: 1. $x+0 . y+5=0$
(ii) $\mathrm{y}=2$

Sol: $0 . x+1 . y-2=0$
(iii) $2 x=3$

Sol: 2. $x+0 . y-3=0$
(iv) $5 y=2$

Sol: $\quad 0 . x+5 . y-2=0$

EXERCISE 4.1

1. The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.

Sol: Let the cost of a notebook $=₹ x$ and cost of a pen $=₹ y$
The cost of a notebook $=2 \times$ the cost of a pen

$$
\begin{aligned}
& x=2 y \\
& x-2 y=0
\end{aligned}
$$

2. Express the following linear equations in the form $a x+b y+c=0$ and indicate the values of a, b and c in each case
(i) $2 x+3 y=9.3 \overline{5}$

Sol: $2 x+3 y-9.3 \overline{5}=0$
$a=2, b=3, c=-9.3 \overline{5}$
(ii) $\boldsymbol{x}-\mathbf{5 y - 1 0}=\mathbf{0}$

Sol: 1. $x-5 . y-10=0$
$a=1, b=-5, c=-10$
(iii) $-2 x+3 y=6$

Sol: $-2 . x+3 . y-6=0$
$a=-2, b=3, c=6$
(iv) $x=3 y$

Sol: $x-3 y=0$
$a=1, b=-3, c=0$

$$
\text { (v) } 2 x=-5 y
$$

$$
\text { Sol: } 2 x+5 y+0=0
$$

$$
a=2, b=5, c=0
$$

$$
\text { (vi) } 3 x+2=0
$$

$$
\text { Sol: } 3 x+0 . y+2=0
$$

$$
a=3, b=0, c=2
$$

$$
\text { (vii) } y-2=0
$$

Sol: $0 . x+1 . y-2=0$

$$
a=0, b=1, c=-2
$$

$$
(v i i i) 5=2 x
$$

Sol: $2 x+0 . y-5=0$
$a=2, b=0, c=-5$

Solution of a Linear Equation

(i) Any pair of values of ' x ' and ' y ' which satisfy the linear equation in two variables $a x+b y+c=0$ is called its solution.
(ii) A linear equation in two variables has infinitely many solutions.

Example 3 : Find four different solutions of the equation $x+2 y=6$.
Sol: Given equation $x+2 y=6$.
(i) Let $x=0 \Rightarrow 0+2 y=6$
$\Rightarrow 2 y=6$
$\Rightarrow y=\frac{6}{2}=3$
Solution: $(0,3)$
(ii) Let $x=2 \Rightarrow 2+2 y=6$
$\Rightarrow 2 y=6-2$
$\Rightarrow 2 y=4$
$\Rightarrow y=\frac{4}{2}=2$
Solution: $(2,2)$
(iii) Let $x=4 \Rightarrow 4+2 y=6$
$\Rightarrow 2 y=6-4$
$\Rightarrow 2 y=2$
$\Rightarrow y=\frac{2}{2}=1$
Solution: $(4,1)$
(vi) Let $x=6 \Rightarrow 6+2 y=6$
$\Rightarrow 2 y=6-6$
$\Rightarrow 2 y=0$
$\Rightarrow y=\frac{0}{2}=0$
Solution: $(6,0)$

Example 4 : Find two solutions for each of the following equations:

(i) $4 x+3 y=12$

Sol: Let $x=o \Rightarrow 4 \times 0+3 y=12$
$\Rightarrow 3 y=12$
$\Rightarrow y=\frac{12}{3}=4$
Solution: $(0,4)$
Let $y=0 \Rightarrow 4 x+3 \times 0=12$
$\Rightarrow 4 x=12$
$\Rightarrow x=\frac{12}{4}=3$
Solution: $(3,0)$
(ii) $2 \boldsymbol{x}+5 \boldsymbol{y}=0$

Sol:Let $x=o \Rightarrow 2 \times 0+5 y=0$
$\Rightarrow 5 y=0$
$\Rightarrow y=0$
Solution: $(0,0)$
Let $x=1 \Rightarrow 2 \times 1+5 y=0$
$\Rightarrow 2+5 y=0$
$\Rightarrow 5 y=-2$
$\Rightarrow y=\frac{-2}{5}$

Solution: $\left(1, \frac{-2}{5}\right)$
(iii) $3 y+4=0$

Sol: $3 y+4=0$
$\Rightarrow 3 y=-4$
$\Rightarrow y=\frac{-4}{3}$
Solutions: $\left(0, \frac{-4}{3}\right),\left(1, \frac{-4}{3}\right)$

EXERCISE 4.2

1. Which one of the following options is true, and why? $y=3 x+5$ has
(i) a unique solution, (ii) only two solutions, (iii) infinitely many solutions

Sol: (iii) infinitely many solutions is true
2. Write four solutions for each of the following equations:
(i) $2 x+y=7$
(a) Let $x=0 \Rightarrow 2 \times 0+y=7$
$\Rightarrow y=7$
Solution: $(0,7)$
(b) Let $x=2 \Rightarrow 2 \times 2+y=7$
$\Rightarrow 4+y=7$
$\Rightarrow y=7-4$
$\Rightarrow y=3$
Solution: $(2,3)$
(c) Let $x=4 \Rightarrow 2 \times 4+y=7$
$\Rightarrow 8+y=7$
$\Rightarrow y=7-8$
$\Rightarrow y=-1$
Solution: $(4,-1)$
(d) Let $y=0 \Rightarrow 2 x+0=7$
$\Rightarrow 2 x=7$
$\Rightarrow x=\frac{7}{2}$
Solution: $\left(\frac{7}{2}, 0\right)$
(ii) $\boldsymbol{\pi} \boldsymbol{x}+\boldsymbol{y}=\mathbf{9}$
(a) Let $x=0 \Rightarrow \pi \times 0+y=9$
$\Rightarrow 0+y=9$
$\Rightarrow y=9$
Solution: $(0,9)$
(b) Let $x=1 \Rightarrow \pi \times 1+y=9$
$\Rightarrow \pi+y=69$
$\Rightarrow y=9-\pi$
Solution: $(1,9-\pi)$
(c) Let $x=-1 \Rightarrow \pi \times(-1)+y=9$
$\Rightarrow-\pi+y=69$
$\Rightarrow y=9+\pi$
Solution: $(-1,9+\pi)$
(d) Let $y=0 \Rightarrow \pi x+0=9$
$\Rightarrow \pi x=9$
$\Rightarrow x=\frac{9}{\pi}$
Solution: $\left(\frac{9}{\pi}, 0\right)$
(iii) $\boldsymbol{x}=4 y$
(a) Let $x=0 \Rightarrow 0-4 y=0$
$\Rightarrow-4 y=0$
$\Rightarrow y=0$
Solution: $(0,0)$
(b) Let $x=4 \Rightarrow 4=4 y$
$\Rightarrow y=\frac{4}{4}=1$
Solution: $(4,1)$
(c) Let $x=2 \Rightarrow 2=4 y$
$\Rightarrow y=\frac{2}{4}$
$\Rightarrow y=\frac{1}{2}$
Solution: $\left(2, \frac{1}{2}\right)$
(d) Let $y=-1 \Rightarrow x=4 \times(-1)$
$\Rightarrow x=-4$
Solution: $(-4,-1)$
3. Check which of the following are solutions of the equation $x-2 y=4$ and which are not:
$(i)(0,2)(i i)(2,0)(i i i)(4,0)(i v)(\sqrt{2}, 4 \sqrt{2})(v)(1,1)$
Sol: $(i)(0,2)$
LHS $=x-2 y=0-2 \times 2=0-4=-4 \neq$ RHS
$\therefore(0,2)$ is not a solution to the equation.
(ii) $(2,0)$

LHS $=x-2 y=2-2 \times 0=2-0=2 \neq$ RHS
$\therefore(2,0)$ is not a solution to the equation.
(iii) $(4,0)$

LHS $=x-2 y=4-2 \times 0=4-0=4=$ RHS
$\therefore(4,0)$ is a solution to the equation
(iv) $(\sqrt{2}, 4 \sqrt{2})$

LHS $=x-2 y=\sqrt{2}-2 \times 4 \sqrt{2}=\sqrt{2}+8 \sqrt{2}=9 \sqrt{2} \neq$ RHS
$\therefore(\sqrt{2}, 4 \sqrt{2})$ is not a solution to the equation.
(v) $(1,1)$

LHS $=x-2 y=1-2 \times 1=1-2=-1 \neq$ RHS
$\therefore(1,1)$ is not a solution to the equation.
4. Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.

Sol: Given equation: $2 \mathrm{x}+3 \mathrm{y}=\mathrm{k}$
if $x=2, y=1$ is a solution of the given equation then
$2 \times 2+3 \times 1=\mathrm{k}$
$4+3=k$
$k=7$

