CHAPTER

1. COORDINATE GEOMETRY was initially developed by the French philosopher and mathematician René Déscartes.
2. In honour of Déscartes, the system used for describing the position of a point in a plane is also known as the Cartesian system
3. The horizontal line $X^{\prime} X$ is called the x - axis and the vertical line $Y Y^{\prime}$ is called the y - axis.
4. The point of intersection of the axes is called the origin, and is denoted by 0
5. The positive numbers lie on the directions $O X$ and $O Y$ are called the positive directions of the x - axis and the y-axis
6. The negative numbers lie on the directions $O X^{\prime}$ and $O Y^{\prime}$ are called the negative directions of the x - axis and the y axis
7. The coordinate axes divide the plane into four parts called quadrants.
8. The distance of a point from the y-axis is called its x coordinate, or abscissa, and the distance of the point from the x -axis is called its y -coordinate, or ordinate
9. If the abscissa of a point is x and the ordinate is y, then (x, y) are called the coordinates of the point.

10. The coordinates of a point on the x-axis are of the form $(x, 0)$ and that of the point on the y-axis are $(0, y)$
11. The coordinates of the origin are $(0,0)$.
12. The coordinates of a point are of the form $(+,+)$ in the first quadrant, $(-,+)$ in the second quadrant, $(-,-)$ in the third quadrant and $(+,-)$ in the fourth quadrant, where + denotes a positive real number and - denotes a negative real number.
13. If $x \neq y$, then $(x, y) \neq(y, x)$, and $(x, y)=(y, x)$, if $x=y$.
14.

Example 1 : See Fig. 3.11 and complete the following statements:

(i) The abscissa and the ordinate of the point B are 4 and 3 respectively. Hence, the coordinates of B are $(4,3)$.
(ii) The x-coordinate and the y-coordinate of the point M are -3 and 4 respectively. Hence, the coordinates of M are ($-3,4$).
(iii) The x-coordinate and the y-coordinate of the point L are -5 and -4 respectively. Hence, the coordinates of L are ($-5,-4$).
(iv) The x-coordinate and the y-coordinate of the point S are 3 and -4 respectively. Hence, the coordinates of S are (3,-4).

Example 2 : Write the coordinates of the points marked on the axes.
Sol: $\quad A=(4,0) ; \quad B=(0,3) ; \quad C=(-5,0) ; \quad D=(0,-4) ; \quad E=\left(\frac{2}{3}, 0\right)$

EXERCISE 3.2

1. Write the answer of each of the following questions:
(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?
Sol: The horizontal line is called the x-axis and vertical line is called the y-axis.
(ii) What is the name of each part of the plane formed by these two lines?

Sol: Quadrant
(iii) Write the name of the point where these two lines intersect.

Sol: Origin(0)
2. See Fig.3.14, and write the following:
(i) The coordinates of B.

Sol: $\mathrm{B}=(-5,2)$
(ii) The coordinates of C .

Sol: $\mathrm{C}=(5,-5)$
(iii) The point identified by the coordinates $(-3,-5)$.

Sol: $(-3,-5)=\mathrm{E}$
(iv) The point identified by the coordinates (2, 4).

Sol: $(2,-4)=G$

(v) The abscissa of the point D .

Sol: 6
(vi) The ordinate of the point H .

Sol: - 3
(vii) The coordinates of the point L .

Sol: $\mathrm{L}=(0,5)$
(viii) The coordinates of the point M

Sol: $\quad M=(-3,0)$

